Geotechnical Engineering Report Palmer Municipal Airport

 \setminus

PALMER MUNICIPAL AIRPORT

CONSTRUCT TAXIWAY N & IMPROVE AIRPORT DRAINAGE

R/AM

Prepared For: CITY OF PALMER 231 W. EVERGREEN AVE. PALMER, AK 99645 Prepared By: HDL ENGINEERING CONSULTANTS, LLC 3335 ARCTIC BLVD. ANCHORAGE, AK 99503 PHONE 907.564.2120 FAX 907.564.2122

PALMER MUNICIPAL AIRPORT

CONSTRUCT TAXIWAY N AND IMPROVE AIRPORT DRAINAGE

GEOTECHNICAL REPORT PALMER, ALASKA

July 2022

Prepared for:

City of Palmer 231 W. Evergreen Avenue Palmer, AK 99645

Prepared by:

HDL Engineering Consultants, LLC 3335 Arctic Boulevard Anchorage, AK 99503 (907) 564-2120

Prepared by:

Belle

Jacqueline LaBelle, EIT Geotechnical Engineering Assistant

Reviewed by:

Jeremy Dvorak, PE Geotechnical Engineer

TABLE OF CONTENTS

TABLE OF CONTENTS	1
TABLE OF CONTENTS (cont'd)	2
ABBREVIATIONS	
INTRODUCTION	4
Scope of Services	
Summary	4
BACKGROUND	5
Existing Conditions	5
Proposed Development	5
PREVIOUS GEOTECHNICAL EVALUATIONS	
SETTING	8
General Geology	
Climatology	8
SUBSURFACE EXPLORATION	
LABORATORY TESTING	
SUBSURFACE CONDITIONS	11
Organic Mat & Topsoil	15
Silt	15
Silty Sand	
Native Sand and Gravel	
Granular Fill	17
Groundwater	
Infiltration Testing	17
ENGINEERING ANALYSIS AND RECOMMENDATIONS	17
Site Preparation and Fill	17
Pavement Design	
Shoulder Surfacing	19
Construction Access Road	
Apron Tiedowns	
Frost Susceptibility	
Drainage and Dewatering	
Reuse of Existing Soils	
Construction Considerations	21
REFERENCES	21
CLOSURE	21

TABLE OF CONTENTS (cont'd)

List of Tables

Table 1 – Summary of Climate Data	9
Table 2 – Silt Laboratory Results Summary	15
Table 3 – Silty Sand Laboratory Results Summary	16
Table 4 – Native Sand and Gravel Laboratory Results Summary	16
Table 5 – Granular Fill Laboratory Results Summary	17

List of Figures

Figure 1 – Vicinity Map	6
Figure 2 – Exploration Location Map	10
Figure 2 – Moisture Content Summary	12
Figure 3 – Moisture Content Summary	13
Figure 4 – Moisture Content Summary	14

Appendices

Appendix A	Limitations
Appendix B	Previous Geotechnical Studies
Appendix C	Boring Log Key
	Frost Design Soil Classification System
	Description and Classification of Frozen Soils
	Peat and Organic Soil Classification System
Appendix D	Boring Logs
	Test Pit Logs
Appendix E	Laboratory Test Results
Appendix F	Fleet Mix
Appendix G	FAARFIELD Software Analysis Results

ABBREVIATIONS

AASHTO	American Association of State Highway and Transportation Officials
ASTM	American Society for Testing and Materials
bgs	Below the existing ground surface
Client	City of Palmer
DOT&PF	Alaska Department of Transportation and Public Facilities
HDL	HDL Engineering Consultants, LLC
I.D	Inside diameter
MPT	Modified Penetration Test
msl	mean sea level
O.D	Outside diameter
PAQ	Palmer Municipal Airport
RAP	Recycled asphalt pavement
Report	Geotechnical Engineering Report
RSA	
Site	Palmer Municipal Airport, Palmer, Alaska
Standard Specifica	tionsDOT&PF Standard Specifications for Airport Construction
USCS	Unified Soil Classification System

INTRODUCTION

In accordance with the request and authorization of the City of Palmer (Client), HDL Engineering Consultants, LLC (HDL) conducted a geotechnical engineering evaluation of the subsurface conditions at the Palmer Municipal Airport (PAQ) in Palmer, Alaska (Site) to support airfield improvements.

This Geotechnical Engineering Report (Report) provides the findings, conclusions, and recommendations that HDL derived from the geotechnical evaluation. This Report is subject to the limitations provided in Appendix A.

Scope of Services

HDL's objective for this project was to evaluate the subsurface conditions near the proposed improvements. To achieve our objective, HDL:

- Advanced thirty-one (31) borings; Excavated four (4) test pits;
- Performed one (1) infiltration test;
- Classified soil samples recovered from the borings and test pits based on visual observations and prepared boring and test pit logs;
- Performed laboratory tests on select samples taken from the borings and test pits;
- Prepared this Report, which summarizes HDL's findings and provides geotechnical recommendations for the proposed improvements.

Summary

This section provides a summary of the geotechnical evaluation for the convenience of the non-technical reader. Read the summary in complete context with the remaining Report.

- 1. Borings and test pits generally encountered an organic mat and topsoil at the ground surface underlain by a layer of silt followed by sand and gravel extending to the termination depths. Cobbles were present in select borings within the sand and gravel layers. The borings and test pits did not encounter groundwater.
- 2. Fill placed on the Site should be placed and compacted in accordance with Alaska Department of Transportation and Public Facilities (DOT&PF) Standard Specifications for Airport Construction (Standard Specifications).
- 3. Fill placed below the structural section should consist of mineral soil that is free of debris, ice, excess moisture, and other deleterious materials, and meet Suitable Material requirements for P-152, Excavation, Subgrade, and Embankment.
- 4. Non-frost susceptible soils to highly frost susceptible soils (NFS to F4) were encountered in the borings. The risk of frost related issues at the Site will increase if the frost susceptible soils are left in place. The risk of frost related issues can be reduced by removing and replacing the frost susceptible soils.

- 5. The granular fill encountered at the surface of the proposed construction access road and within the Taxiway B embankment generally meets the Suitable Material requirements for P-152 and may be used at the bottom of the structural section for the Taxiway J extensions, pending confirmation testing during construction.
- 6. The native silts will be sensitive to moisture and may be difficult to place, compact, and traffic on if exposed to rainfall or runoff during construction.
- 7. The calculated infiltration rate near the proposed infiltration gallery was 0.14 minutes per inch.

BACKGROUND

The proposed improvements are located at PAQ in Palmer, Alaska. Figure 1 provides a map of the Site location.

Existing Conditions

PAQ currently has a 6,008 foot paved main runway (16/34), a 3,617 foot paved crosswind runway (10/28), a 1,560 foot gravel runway, two paved aircraft aprons, and 10 paved taxiways. Ditching and culverts direct surface runoff to the south east side of the Runway 34 Runway Safety Area (RSA) where water collects and percolates into the soil.

Proposed Development

The proposed improvements include the following:

- Construct Taxiway N;
- Extend and realign Taxiway J;
- Remove Taxiway B west of Taxiway A;
- Construct Apron E;
- Widen shoulders on Taxiway L;
- Build a construction access road;
- Construct an infiltration gallery east of the Runway 34 RSA;
- Grade designated infield areas to promote drainage to existing and new storm water collection systems; and,
- Improve airport lighting.

Figure 1 VICINITY MAP PALMER MUNICIPAL AIRPORT **CONSTRUCT TAXIWAY N AND IMPROVE AIRPORT DRAINAGE** PALMER, AK

We understand that Taxiway N may be used by the entire fleet mix but Taxiway J will only be used by aircraft weighing less than 60,000 pounds. We understand Apron E will primarily be used by aircraft weighing less than 4,000 pounds but may be used by aircraft weighing up to 25,000 pounds.

PREVIOUS GEOTECHNICAL EVALUATIONS

Geotechnical data available from previously completed evaluations near PAQ was reviewed. Summaries of the data reviewed are provided below and excerpts from the reports are provided in Appendix B.

Palmer Taxiway "A" Improvement Project - Geotechnical Report - Palmer, Alaska, March 2002

Eighteen (18) test holes were drilled between October 4 and 11, 2001 to support design of the proposed Taxiway A. The depth of the test holes ranged from 10.5 feet to 16.5 feet below the existing ground surface (bgs). Test holes were performed along the proposed Taxiway A, Taxiway E, and Taxiway F.

Test holes generally encountered an organic layer at the surface underlain by very loose to loose sandy silt extending to depths between 3.5 and 8.5 feet bgs. Medium dense to very dense gravels with varying amounts of sand, silt, and cobbles were encountered below the sandy silt and extended to the termination depths. Groundwater was not encountered in the test holes.

Palmer Airport Apron "A" and Taxiway "J" and "L" - Geotechnical Report - Palmer, Alaska, January 2004

Thirteen (13) test holes were drilled for the Apron A, Taxiway J and L project between July 16 and 17, 2003. The depth of the test holes ranged from 15 feet to 20 feet bgs. Test holes were performed in or near the proposed Apron A, Taxiway J, and Taxiway L.

Test holes generally encountered a layer of very loose to medium dense silt, with varying amounts of sand and organics underlain by medium dense to dense gravels and sands with varying amounts of silt extending to the termination depths. Groundwater was not encountered in the test holes.

Palmer Airport Rehabilitate Runway 9/27 and Related Improvements - Geotechnical Report - Palmer, Alaska, November 2005

Seventeen (17) test holes were drilled between September 21 and 22, 2005 to support rehabilitation design of Runway 9/27, Taxiway B, and the southwest commercial apron (large aircraft apron). The depth of the test holes ranged from 14 feet to 15 feet bgs. Fourteen (14) test holes were performed along Runway 9/27 and Taxiway B, and three (3) test holes were performed north of the large aircraft apron in the area of the apron expansion proposed for this project.

Test holes performed in the runway and taxiway generally encountered a structural section ranging from 1.7 feet to 2.7 feet thick underlain by a layer of sandy silt.

Medium dense to very dense sandy gravel with varying amounts of silt was encountered beneath the silt layer and extended to the termination depths. Test holes performed in the proposed apron expansion encountered an organic mat underlain by sandy silt followed by sandy gravel with varying amounts of silt extending to the termination depths. Groundwater was not encountered in the test holes.

SETTING

The following sections provide information about the geologic and climatic setting for the Site.

General Geology

The project area is located within the Cook Inlet Susitna Lowland subprovince of the Coastal Trough province of Alaska. The subprovince is characterized by glaciated lowland areas containing ground moraine, stagnant ice fields, drumlin fields, eskers, and outwash plains. The local relief is between 50 to 250 feet and the majority of the lowland is less than 500 feet above mean sea level (msl). Rolling upland areas rise to about 3,000 feet in altitude near the bordering mountain ranges. There are many irregular lakes and ponds in the area. The area is almost ice free and sporadic permafrost is present only in the northern portion of the subprovince (Wahrhaftig 1965).

Soils in the area are typically glacially derived sands and gravels and are typically overlain by a wind blown silt. Peat bogs are common in many low lying areas. Retreat of the glaciers formed the three major drainages of the area, the Knik, Matanuska, and Susitna rivers. The underlying bedrock generally consists of poorly consolidated coal-bearing rocks of tertiary age.

The project is located in a region of moderate seismicity and large-scale earthquakes may cause ground ruptures in some areas. Based on the United States Geologic Survey earthquake catalog, there were 112 events above Richter Magnitude 5 within 100 miles of the Site from 1899 through 2021, of which 28 exceeded Richter Magnitude 6.

Climatology

The project area is part of the transitional climate zone between the maritime climate of the southern coastal areas and the continental climate of interior Alaska. The zone is characterized by diurnal and annual temperature variations, moderate annual precipitation, and moderate surface winds. Average temperatures vary between lows of 5.5° Fahrenheit in January and highs of 67.1° Fahrenheit in July. Rainfall averages approximately 15.7 inches annually and is heaviest in August and September. Snowfall averages approximately 56 inches annually. Table 1 provides a summary of the climate data.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Avg High. Temp (°F)	20.6	27.0	34.7	46.7	58.3	65.0	67.1	64.7	56.6	41.9	27.5	22.5	44.4
Avg Low. Temp (°F)	5.5	10.4	16.2	28.4	38.0	45.7	49.2	47.2	40.0	27.0	13.1	8.1	27.4
Avg Total Precip (in.)	0.91	0.83	0.72	0.47	0.67	1.31	2.06	2.36	2.45	1.52	1.26	1.15	15.73
Avg Total Snowfall (in.)	8.7	9.5	7.4	2.9	0.1	0.0	0.0	0.0	0.0	5.3	9.5	12.8	56.1

Table 1 – Summary of Climate Data

Palmer Job Corps, Alaska (506870) / Period of Record Monthly Climate Summary / Period of Record: 11/20/1948 through 12/31/2015 (Western Regional Climate Center, 2021)

SUBSURFACE EXPLORATION

HDL evaluated the subsurface conditions near the proposed improvements between November 3, 2021 and November 5, 2021. HDL developed an exploration plan using guidance from the Alaska Geotechnical Procedures Manual and Federal Aviation Administration Advisory Circular 150/5320-6G: Airport Pavement Design and Evaluation, modified to suit the project scope and location. The subsurface exploration consisted of twenty-one (21) borings, designated HDL-01 through HDL-21, and four (4) test pits, designated HDL-22 through HDL-25. On February 4, 2022, HDL evaluated the subsurface conditions near the proposed apron improvements. The subsurface exploration consisted of ten (10) borings, designated HDL-26 through HDL-35. The borings were located in the field using a handheld GPS and final locations were adjusted onsite due to access and obstructions. The maximum depth of the explorations was 17.0 feet below existing ground surface (bgs). Figure 2 shows the approximate boring and test pit locations.

Discovery Drilling, Inc mobilized a truck mounted CME 75 drill rig to perform the borings. Borings located within the existing Taxiway B embankment were performed using 3-inch outside diameter (O.D.) split spoons. Borings drilled greater than 4.0 feet bgs were performed using 3.25-inch inside diameter (I.D.) hollow stem augers. Split-spoon sampling was conducted in accordance with the Modified Penetration Test (MPT) procedure. In the Modified Penetration Test, samples are recovered by driving a 3-inch O.D. split-spoon sampler into the bottom of the advancing hole with blows of a 340-pound hammer free-falling 30 inches onto the drill rod. The number of blows required to advance the sampler the second and third 6-inch interval is termed the Penetration Resistance, designated as the "N-value". The N-value gives a measure of the relative density (compactness) or consistency (stiffness) of unfrozen cohesionless and cohesive soils, respectively. Split spoon samples were collected at 2.5 foot intervals in borings drilled greater than 4.0 feet bgs. The borings were backfilled with auger cuttings and pea gravel.

gs\18001_15_EXPLOR_MAP-FIG1, 1=1, 02-22-22 at 12:49 by jkk XREF: 18001_15_X_X01, 18001_15_XIMAGE-2019 ay N Design\CAD\Dra Taxi (COP)\15 H:\jobs\18-001 LAYOUT: FIG1

BORING
TEST PIT

Figure 2 EXPLORATION LOCATION MAP PALMER MUNICIPAL AIRPORT CONSTRUCT TAXIWAY N AND IMPROVE AIRPORT DRAINAGE PALMER, AK The City of Palmer Public Works department provided a John Deer 410E backhoe and operator to perform the test pits near the proposed infiltration gallery. Grab samples were collected at select intervals. Infiltration testing was conducted in HDL-25 in a 4-inch diameter standpipe with a final depth of approximately 2.0 feet bgs.

HDL performed fieldwork in general accordance with the procedures outlined in the DOT&PF "Alaska Geotechnical Procedures Manual". Infiltration testing was performed in general accordance with the Environmental Protection Agency's "Falling Head Percolation Test Procedure". An experienced HDL engineering assistant located the borings and test pits, collected samples, logged subsurface conditions, observed groundwater depths, where encountered, and performed infiltration testing. We described the subsurface conditions in accordance with the following methods and standards:

- ASTM International Standard (ASTM) D2488 for field description of soils;
- Frost Design Soil Classification using the DOT&PF methodology; and,
- Unified Soil Classification System (ASTM D2487) to confirm or modify soil classifications based on laboratory test results.

The Boring Log Key and Frost Design Soil Classification Key are in Appendix C. Boring logs and test pit logs are attached in Appendix D.

LABORATORY TESTING

HDL conducted the following laboratory tests on select soil samples at our AASHTO accredited and United States Army Corp of Engineers validated laboratory:

- One hundred and forty-eight (148) natural moisture content tests (ASTM D 2216);
- Forty-one (41) grain size distribution tests (ASTM D 422); and,
- Ten (10) organic content tests (ASTM D 2974).

After testing, the remaining samples were stored at HDL's laboratory. Sample test results are provided on the boring and test pit logs in Appendix D and the grain-size distribution curves in Appendix E. Figures 3, 4, and 5 provide a summary of the moisture content results.

SUBSURFACE CONDITIONS

In general, the borings and test pits encountered an organic mat underlain by sandy silt with varying amounts of gravel and organics. Sand and gravel with varying amounts of silt were encountered below the near surface sandy silt and were present to the termination depths.

H:\jobs\18-001 Palmer Airport Term (COP)\15 Taxiway N Design\CAD\Drawings\Geo\18001_15_Geo_Fence, 1=1, 12-01-21 at 11:40 by unknown LAYOUT: FIGURE 3

ſ

XREF: _AK83-SP4_ALL-IMAGES

Figure 3 MOISTURE CONTENT SUMMARY PALMER MUNICIPAL AIRPORT CONSTRUCT TAXIWAY N AND IMPROVE AIRPORT DRAINAGE PALMER, AK H:\jobs\18-001 Palmer Airport Term (COP)\15 Taxiway N Design\CAD\Drawings\Geo\18001_15_Geo_Fence, 1=1, 12-01-21 at 11:40 by LAYOUT: FIGURE 4 _AK83-SP4_ALL-IMAGES

unknown

Figure 4 MOISTURE CONTENT SUMMARY PALMER MUNICIPAL AIRPORT CONSTRUCT TAXIWAY N AND IMPROVE AIRPORT DRAINAGE PALMER, AK H:\jobs\18-001 Palmer Airport Term (COP)\15 Taxiway N Design\CAD\Drawings\Geo\18001_15_Geo_Fence, 1=1, 12-01-21 at 11:40 by unknown LAYOUT: FIGURE 4

XREF: _AK83-SP4_ALL-IMAGES

0	22.6		7.4 1	0/0/0	6.2 1	0/0/0	° 17.8° °	0	4.0 1	0/0/0/0	6.9		36.9 1	000	10:3 1	0 0 0	8.9	0	6.6
	29.2		31.9	100000 V	10.3 33.0	/ a / a	27.0	0	34.5	0101	24.7 4.7		28.9 3.4		40.0		29.9	/ e/o	3.9
	26.8		23.2		34.8				6.7		2.5		2.5		32.9		33.6		5.1
	3.3		4.0		3.8	N N Some Some Some Some Some Some Some Some	3.8		3.1	00000	2.2		2.3		4.5		3.9		2.2
					3.8						2.9	<u> </u>						0. N. 6	3.5
		*****						0 # 0 6 4 0 # 0		00000000000000000000000000000000000000	4.3								
			0 0								3.1								
B		60 6 7 6 7 6 8	2	~~~~~	3	• 0 0 0 0 0 0 0 0 0	o y o v o o o o	0 3 0 0 0 0 0 0	5	988889 9888 9888 9888 9888 9888 9888 9		5	7	2040.00.04			••••••)	0000000

Pigure 5 MOISTURE CONTENT SUMMARY PALMER MUNICIPAL AIRPORT CONSTRUCT TAXIWAY N AND IMPROVE AIRPORT DRAINAGE PALMER, AK

Organic Mat & Topsoil

An organic mat was encountered at the surface in HDL-01 through HDL-03, HDL-08, HDL-12 through HDL-15, HDL-17 through HDL-19, and HDL-22 through HDL-25. The organic mat and topsoil layer ranged in thickness from approximately 0.1 feet thick to approximately 1.3 feet thick. Detailed information may be found on the logs presented in Appendix D.

Silt

Silt with varying amounts of sand, gravel, and organics was encountered at the surface or beneath the organic mat, when present, in borings and test pits performed off of existing embankments. Silt was generally encountered beneath the structural section where embankments were present. The silt layer ranged in thickness from 2.8 feet to 8.2 feet thick. Table 2 summarizes the laboratory results for this stratum.

Test Hele	Depth	Grain Size Distribution								
Test Hole	(ft)	% Gravel	% Sand	% P200						
HDL-01	2.5	2.1	13.5	84.4						
HDL-02	2.5	0.0	12.5	87.5						
HDL-03	2.5	0.1	14.0	85.9						
HDL-05	0.5	0.0	10.9	89.1						
HDL-06	0.8	7.4	19.0	73.6						
HDL-09	3.3	0.0	11.8	88.2						
HDL-12	2.5	0.0	26.1	73.9						
HDL-14	2.5	1.6	17.1	81.3						
HDL-15	2.5	0.0	18.9	81.1						
HDL-17	2.5	0.4	26.7	72.9						
HDL-18	2.8	0.6	13.4	86.0						
HDL-19	2.5	0.0	16.6	83.4						
HDL-20	2.6	0.6	8.8	90.6						

Table 2 – Silt Laboratory Results Summary

Silty Sand

A silty sand layer that was interpreted to be fill was encountered at the surface in HDL-27 through HDL-31 and HDL-33 through HDL-35. This layer generally extended from the existing ground surface to depths ranging from 2.5 feet to 3.5 feet bgs. Table 3 summarizes the laboratory results for this stratum.

	Depth	G	irain Size Distributio	n
Test Hole	(ft)	% Gravel	% Sand	% P200
HDL-27	0.0	25.5	59.8	14.7
HDL-28	0.0	27.9	54.6	17.5
HDL-29	0.0	30.0	42.5	27.5
HDL-30	0.0	20.2	58.8	21.0
HDL-31	0.0	19.4	61.7	18.9
HDL-33	0.0	26.1	53.6	20.3
HDL-35	0.0	30.8	54.9	14.3

Table 3 – Silty Sand Laboratory Results Summary

Native Sand and Gravel

Native sand and gravel with varying amounts of silt and cobbles were encountered beneath the silt layer and generally extended to the boring and test pit termination depth. Table 4 summarizes the laboratory results for this stratum.

Test Hala	Depth	G	irain Size Distributio	n
l'est Hole	(ft)	% Gravel	% Sand	% P200
HDL-02	7.5	42.2	47.6	10.2
HDL-03	5.4	47.1	39.1	13.8
HDL-08	3.3	53.8	42.8	3.4
HDL-08	10.0	36.8	55.5	7.7
HDL-09	5.7	14.7	67.2	18.1
HDL-10	2.8	61.2	32.8	6.0
HDL-11	3.1	56.2	38.2	5.6
HDL-13	3.3	58.2	37.4	4.4
HDL-14	3.7	65.9	27.9	6.2
HDL-15	5.0	52.5	44.6	2.9
HDL-16	3.7	1.8	72.2	26.0
HDL-17	10	55.3	38.2	6.5
HDL-22	9.0	66.9	32.1	1.0
HDL-25	0.2	52.5	44.4	3.1
HDL-29	5.9	71.3	24.6	4.1
HDL-32	3.3	50.6	38.7	10.7

Table 4 – Native Sand and Gravel Laboratory Results Summary

Granular Fill

Granular soils, interpreted to be fill, consisting of sand and gravel with varying amounts of silt, was encountered at the surface in borings performed in the Taxiway B shoulders and near the proposed construction access road. The granular fill ranged in thickness from 0.5 feet to greater than 4.0 feet. Table 5 summarizes the laboratory results for this stratum.

Test Hele	Depth	Grain Size Distribution		
l'est hole	(ft)	% Gravel	% Sand	% P200
HDL-04	0.0	46.9	45.4	7.7
HDL-06	0.0	39.9	52.7	7.4
HDL-07	0.0	41.2	54.0	4.8
HDL-20	0.0	55.1	38.1	6.8
HDL-21	2.5	16.7	38.0	45.3

Table 5 – Granular Fill Laborator	ry Results Summary
-----------------------------------	--------------------

Groundwater

Free groundwater was not encountered in the borings or test pits. Groundwater levels at the Site may fluctuate depending on the season, temperature, and precipitation. Groundwater levels during construction may be higher or lower than those encountered.

Infiltration Testing

HDL performed infiltration testing in the native sand and gravel in HDL-25, near the proposed drainage improvements. Infiltration testing was conducted in a 4-inch diameter standpipe installed to a final depth of approximately 2.0 feet bgs. Per the Falling Head Percolation Test Procedure, the last measurement taken is used to calculate the infiltration rate. Based on the last measurement, the calculated infiltration rate was 0.14 minutes per inch. Based on the subsurface conditions observed, we would expect the infiltration test results to be representative of the native sand and gravel along the length of the proposed drainage improvements.

ENGINEERING ANALYSIS AND RECOMMENDATIONS

A summary of the geotechnical considerations and recommendations are provided below.

Site Preparation and Fill

HDL recommends the Site be cleared of vegetation, the organic mat, and deleterious materials. Existing pavement on Taxiway B should be milled or removed and crushed/pulverized to meet the requirements of Item P-161 Recycled Asphalt Pavement. We recommend the exposed subgrade be proof-rolled to provide a level, firm, uniform, and unyielding surface prior to the placement of fill. Fill placed on the Site should be placed and compacted in accordance with

DOT&PF Standard Specifications for Airport Construction (Standard Specifications).

Fill placed below the structural section should consist of mineral soil that is free of debris, ice, excess moisture, and other deleterious materials, and meet Suitable Material requirements for P-152, Excavation, Subgrade, and Embankment.

Pavement Design

HDL developed pavement recommendations based on the following design standards, design criteria, and inputs:

- Federal Aviation Administration Advisory Circular 150/5320-6G;
- FAARFIELD V2.0 software (example provided in Appendix G);
- Geotechnical Data;
- Fleet mix for PAQ (provided in Appendix F); and,
- 20-year design life;

HDL used the Limited Subgrade Frost Penetration design procedure, which requires 65% of the frost penetration to be composed of non-frost susceptible material, for design of the pavement structural section. Based on the work previously conducted at the airport by HDL, a minimum structural section of 54 inches is recommended for the proposed taxiways and a minimum structural section of 42 inches is recommended for Apron E.

Taxiway N will be designed to serve all aircraft at PAQ. The minimum recommended structural section for Taxiway N is as follows:

4 inches	Asphalt Pavement (Item P-401 Type II, Class A)
6 inches	Crushed Aggregate Base Course (Item P-209)
6 inches	Subbase Course (Item P-154)
38 inches	Embankment (Item P-152)

Assuming Taxiway J only serves aircraft weighing less than 60,000 pounds, the minimum recommended structural section for the Taxiway J extensions is as follows:

Asphalt Pavement (Item P-401 Type II, Class B)
Crushed Aggregate Base Course (Item P-209)
Subbase Course (Item P-154)
Embankment (Item P-152)

Assuming Apron E will primarily serve aircraft weighing less than 4,000 pounds with some aircraft weighing up to 25,000 pounds, the minimum recommended structural section for Apron E is as follows:

3 inches	Asphalt Pavement (Item P-401 Type II, Class B)
4 inches	Crushed Aggregate Base Course (Item P-209)	
6 inches	Subbase Course (Item P-154)	
29 inches	Embankment (Item P-152)	

The total structural section assumes silt will be present at the bottom of the excavation. The thickness of Embankment (Item P-152) may be reduced if the native sand and gravel is encountered within the proposed structural section, with approval from the geotechnical engineer. We do not recommend removing and replacing the native sand and gravel with Embankment.

Granular material, generally consisting of silty sand, was encountered at the ground surface near the proposed apron E area. This material does not meet the requirements of Item P-152 and should not be used within the pavement structural section.

HMA pavement should be placed and compacted in accordance with the Standard Specifications. HMA pavement should meet the requirements of Item P-401 Plant Hot Mix Asphalt Pavement. Crushed Aggregate Base Course and Subbase Course should meet the requirements of Item P-209 and Item P-154, respectively, and be placed and compacted in accordance with the Standard Specifications. Embankment material should meet the Suitable Material requirements for P-152, Excavation, Subgrade, and Embankment. Item P-152 should be placed and compacted in accordance with the Standard Specifications.

The recommended structural sections do not provide full frost protection and seasonal movement of the pavement should be expected. This movement may reduce the life of the pavement; however, we do not anticipate significant differential movement to be realized. The life of the pavement can be increased by increasing the thickness of the structural section.

Shoulder Surfacing

The taxiway shoulders should be surfaced with a minimum of 4 inches of RAP (Item P-161) or Crushed Aggregate Base Course (Item P-209).

Construction Access Road

The proposed construction access road will provide access for heavy construction equipment for the duration of construction. We understand the existing alignment is surfaced with gravel but has several low areas and soft spots. We recommend excavating approximately 2 feet of material and replacing it with compacted fill. The exposed subgrade should be proof-rolled to provide a level, firm, uniform, and unyielding surface prior to the placement of fill. The minimum recommended structural section for the proposed construction access road is as follows:

6 inches	Crushed Aggregate Base Course (Item P-209) or	
	Recycled Asphalt Pavement (Item P-161)	
6 inches	Subbase course (Item P-154)	
12 inches	Embankment (Item P-152)	
P-681	Geotextile for Separation	

The geotextile should meet the requirements of Item P-681 for separation and be placed according to the Standard Specifications. Crushed Aggregate Base Course, Recycled Asphalt

Pavement, and Subbase Course should meet the requirements of Item P-209, Item P-161, and Item P-154, respectively, and be placed and compacted in accordance with the Standard Specifications. Embankment material should meet the Suitable Material requirements for P-152, Excavation, Subgrade, and Embankment. Item P-152 should be placed and compacted in accordance with the Standard Specifications.

Apron Tiedowns

Tiedowns on Apron E should meet the requirements indicated in Item P-650, Aircraft Tie-Down of the Standard Specifications.

Frost Susceptibility

Palmer is in a region of moderate freeze and thaw cycles. Soils throughout the project were typically non- to highly-frost susceptible (NFS to F4). Highly frost susceptible soils were encountered within the shallow subsurface at the Site. Leaving the highly frost susceptible soils in place increases the risk of frost related issues. The recommended structural sections do not provide full frost protection and seasonal movement of the pavement should be expected. This movement may reduce the life of the pavement. The life of the pavement can be increased by increasing the thickness of the structural section.

Drainage and Dewatering

Free groundwater was not encountered during drilling. Groundwater is not likely to be encountered during typical site preparation work, but the groundwater level will likely vary from that encountered during drilling. HDL recommends the site be graded to promote positive drainage away from the paved surfaces and compaction of the near surface soils to reduce permeability.

Reuse of Existing Soils

The existing organic mat, topsoil, and sandy silt may not be used within the proposed taxiway and construction access road embankments. The organic mat and topsoil may be used as topsoil and the sandy silt may be used as fill in the infield areas.

The granular fill encountered in the borings at the surface of the proposed construction access road, within the Taxiway B embankment generally meets the Suitable Material requirements for P-152 and may be used at the bottom of the structural section for the Taxiway J extensions. Additional laboratory testing should be performed during construction to confirm the material meets the requirements of P-152 prior to reuse.

The granular fill encountered in the borings near the surface of a portion of the Apron E area does not meet the Suitable Material Requirements for Item P-152 and may not be used within the pavement structural section. This granular material may be used outside the pavement structural sections as fill.

RAP may be used to surface the taxiway shoulders or proposed construction access road as detailed in the previous sections.

Construction Considerations

Silt and silt-rich soils will be exposed in the subgrade during construction and will be difficult to moisture condition and compact. It is recommended that exposure of the subgrade be limited to maintain the integrity of the subgrade. The contractor should be prepared for challenges during construction if the subgrade soils get wet.

REFERENCES

- Alaska Department of Transportation and Public Facilities. 2007. *Alaska Geotechnical Procedures Manual.*
- United States Geological Survey (USGS). 2021. *U.S. Earthquake Catalog*. Accessed November 15, 2021. U.S. Geological Survey Earthquake Catalog Search. https://earthquake.usgs.gov/earthquakes/search/
- Wahrhaftig, Clyde. 1965. *Physiographic Divisions of Alaska.* Geological Survey Professional Paper
 482. Washington, DC US Department of the Interior. Print.
- Western Regional Climate Center (WRCC), 2021, *Palmer Job Corps, Alaska (506870): Period of Record Monthly Climate Summary*. Accessed November 15, 2021 from https://wrcc.dri.edu/summary/Climsmak.html

CLOSURE

This Report has been prepared at the request and authorization of the City of Palmer and is subject to the Limitations provided in Appendix A. Please feel free to contact Jeremy Dvorak at jdvorak@hdlalaska.com or (907)564-2120 for questions or clarifications.

Appendix A

Limitations

GEOTECHNICAL LIMITATIONS

Use of Report

- 1. HDL Engineering Consultants, LLC (HDL) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to HDL.
- 2. If substantial time has elapsed between submission of this report and the start of work at the site, or if conditions have changed because of natural causes or construction operations at or adjacent to the site, we recommend that HDL be retained to review this report to determine the applicability of the conclusions considering the time lapse or changed conditions.

Standard of Care

- 3. HDL's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Proposal for Services and/or Report, and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. If conditions other than those described in this report are found at the subject location(s), or the design has been altered in any way, HDL shall be so notified and afforded the opportunity to revise the report, as appropriate, to reflect the unanticipated changed conditions.
- 4. HDL's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made.

Subsurface Conditions

- 5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs.
- 6. Unanticipated soil conditions are commonly encountered and cannot be fully determined by merely taking soil samples or advancing borings. Such unexpected conditions frequently require additional expenditure to attain a properly constructed project. Therefore, some contingency fund is recommended to accommodate such potential extra costs.
- 7. In preparing this report, HDL relied on certain information provided by the Client, state

and local officials, and other parties referenced therein which were made available to HDL at the time of our evaluation. HDL did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this evaluation.

- 8. Water level readings have been made in test holes (as described in the Report) and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this Report. Fluctuations in the level of the groundwater occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The water encountered in the course of the work may differ from that indicated in the Report.
- 9. HDL's services did not include an assessment of the presence of oil or hazardous materials at the property. Consequently, we did not consider the potential impacts (if any) that contaminants in soil or groundwater may have on construction activities, or the use of structures on the property.
- 10. Recommendations for foundation drainage, waterproofing, and moisture control address the conventional geotechnical engineering aspects of seepage control. These recommendations may not preclude an environment that allows the infestation of mold or other biological pollutants.

Compliance with Codes and Regulations

11. We used reasonable care in identifying and interpreting applicable codes and regulations. These codes and regulations are subject to various, and possibly contradictory, interpretations. Compliance with codes and regulations by other parties is beyond our control.

Additional Services

12. HDL recommends that we be retained to provide services during any future: site observations, design, implementation activities, construction and/or property development/redevelopment. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

Appendix B

Previous Geotechnical Studies

(Arranged in Chronological Order)

November 30, 2005

Prepared by:

M. Dale Butikofer, E.I.T. Staff Engineer

Reviewed by:

Lorie M. Dilley, P.E./C.P.G. Principal Geotechnical Engineer

TABLE OF CONTENTS

1.0	INTRODUCTION	.1
2.0	SITE AND PROJECT DESCRIPTION	.1
3.0	FIELD EXPLORATIONS	. 2
4.0	LABORATORY TESTING	.3
5.0	SUBSURFACE CONDITIONS	.3
5.1 5.2	RUNWAY AND TAXIWAY Commercial Apron	. 4 . 5
6.0	CLIMATOLOGY	. 5
7.0	ENGINEERING ANALYSIS & RECOMMENDATIONS	.5
7.0 7.1 7.2 7.3 7.4 7.5	ENGINEERING ANALYSIS & RECOMMENDATIONS Runway and Taxiway Commercial Apron Quality Control Drainage Fill and Compaction	• 5 • 6 • 7 • 8 • 8 • 8

LIST OF FIGURES

Figure 1	Vicinity Map
Figure 2	Borehole Location & Site Map
Figure 3	Runway 9/27 Plan & Profile Sta 1+50 to Sta 10+00
Figure 4	Runway 9/27 Plan & Profile Sta 10+00 to Sta 18+50
Figure 5	Runway 9/27 Plan & Profile Sta 18+50 to Sta 27+00
Figure 6	Runway 9/27 Plan & Profile Sta 27+00 to Sta 35+50
Figure 7	Runway 9/27 Plan & Profile Sta 35+50 to Sta 44+00
Figure 8	Taxiway B Plan & Profile Sta 3+09.57 to Sta 10+00
Figure 9	Taxiway B Plan & Profile Sta 10+00 to Sta 18+50
Figure 10	Taxiway B Plan & Profile Sta 18+50 to Sta 27+00
Figure 11	Taxiway B Plan & Profile Sta 27+00 to Sta 35+50
Figure 12	Taxiway B Plan & Profile Sta 35+50 to Sta 42+03.08
Figure 13	City of Palmer Gradation Requirements

LIST OF APPENDICIES

Appendix A	
Figure A-1	Unified Soil Classification System
Figure A-2	Municipality of Anchorage Frost Classification
Figure A-3 to A-19	Log of Borings
Figure A-20 to A-21	Grain Size Distributions

GEOTECHNICAL REPORT RUNWAY 9-27, TAXIWAY B, AND COMMERCIAL APRON REHABILITATION PALMER AIRPORT PALMER, ALASKA

1.0 INTRODUCTION

This report presents the results of subsurface explorations, laboratory testing, and geotechnical engineering studies for the rehabilitation of Runway 9-27, the associated taxiway (Taxiway B), and the commercial apron located at the Palmer Municipal Airport in Palmer, Alaska. The purpose of the field exploration was to define the soil and groundwater conditions for use in the design of the improvements to the airport. To develop the criteria for use in design, seventeen borings were advanced within the proposed improvement areas. Soil samples recovered from the borings were classified in the field and returned to our laboratory for testing and verification. Based on the field observations and laboratory results, engineering studies were conducted to develop our design recommendations. Included in this report are a description of the site and project, subsurface explorations and laboratory test procedures, interpretation of the subsurface conditions and conclusions, and recommendations from our engineering studies.

2.0 SITE AND PROJECT DESCRIPTION

The project is located at the municipal airport in Palmer Alaska. Palmer is located 42 miles northeast of Anchorage along the Glenn Highway. Figure 1 presents a vicinity map and Figure 2 presents a project site map. Palmer lies on the outwash plain of the Matanuska and Knik Glaciers. Thick deposits of sand and gravel are a result of past glacial activity and stream deposition. These deposits are mantled by loess (wind blown silt) throughout Palmer.

The project will consist of rehabilitating the approximately 4,000 foot long runway and Taxiway B. The pavement section for Runway 9/27 and Taxiway B is based on B-II aircraft. A Beech Super King Air is the design B-11 aircraft which has a maximum take off weight of 12,500 pounds. Although larger aircraft are stationed at the airport, they are restricted from using Runway 9/27 and Taxiway B.

The commercial apron located on the southern end of the airport will also be extended to the north by approximately 243,000 square feet. The commercial apron's pavement

section is based on B-III aircraft. A DC-6 is the design B-III aircraft which has a maximum take off weight of 104,000 pounds.

The structural section designs for the runway, taxiway, and apron follows FAA circular AC 150/5320-6D and is based on determining the California Bearing Ratio (CBR) for the soils. The section based on the supporting soils CBR is then checked against frost penetration and the section is thickened if appropriate. The thicker section is then chosen as the design section for each facility.

3.0 FIELD EXPLORATIONS

Seventeen borings, designated Boring BH-1 through BH-17, were advanced at the site on the 21st and 22nd of September, 2005. The locations of these borings are shown on Figure 2. Locations of the borings were based on location of pavement degradation along both the runway and taxiway, and accessibility. Discovery Drilling Inc. of Anchorage, Alaska provided drilling services for this project using a CME 75 drill rig with 3 ½-inch hollow stem auger and a three-inch outside diameter (O.D.) split spoon sampler. An experienced engineer from our firm was present continuously during drilling to locate the borings, observe drill action, collect samples, log subsurface conditions, and monitor any groundwater encountered. The soils were classified according to the Unified Soil Classification System presented in Appendix A, Figure A-1. Frost classifications were assigned to the soils according to the classification presented in Appendix A, Figure A-2. Detailed logs of the borings are presented in Appendix A, Figures A-3 through A-19.

The borings were advanced to nominal depth of 15 feet. One boring, BH-10 encountered auger refusal at 14 feet. Cobbles and boulders are common in the deeper, glacially deposited soil. In each of the borings, split-spoon samples were collected at 2.5-foot intervals from the surface to and including 5 feet in depth, and then at 10 and 15 feet in depth. Sampling with the split-spoon was conducted using the Modified Penetration Test procedure. In the Modified Penetration Test, samples are recovered by driving a 3-inch O.D. split spoon sampler into the bottom of the advancing hole with blows of a 340-lb. hammer free-falling 30 inches onto the drill rod. The number of blows required to advance the sampler the final 12 inches of an 18-inch penetration in the test is termed the Penetration Resistance, which was recorded for each sample depth. The values give a measure of the relative density (compactness) or consistency (stiffness) of cohesionless or cohesive soils, respectively.

4.0 LABORATORY TESTING

Laboratory tests were performed on selected samples recovered from the borings to verify field classifications. The laboratory testing was formulated with emphasis on determining the materials classification, moisture, and frost characteristics. This data, along with estimated strength and density properties, provided information for developing the structural section. The soils were classified in the field and later confirmed from laboratory testing. The Municipality of Anchorage (MOA) frost classification, presented in Figure A-2, Appendix A was used to estimate the frost characteristics of the soils based on the laboratory results.

A total of 100 water content tests were performed on samples from the seventeen borings. The results or the water content test provide an estimate on saturation. These tests were conducted in accordance with procedures described in ASTM D-2216. The results of the water content measurements are presented on the boring logs, in Appendix A, Figures A3 through A19.

Grain size classification tests for this project consisted of ten mechanical sieve tests and thirteen P200 tests. The results were used to estimate permeability characteristics and frost susceptibility of the soils. The mechanical sieve tests were conducted according to procedures described in ASTM D-422. The results of the mechanical sieves are presented in Appendix A, Figures A-20 through A-21, and on the bore logs in Appendix A, Figures A3 through A19. The P200 tests were conducted according to procedures described in ASTM D-1140. The results of the P200 tests are presented on the bore logs in Appendix A, Figures A3 through A19.

5.0 SUBSURFACE CONDITIONS

The soils at the Palmer Airport are glacialfluvial in origin. Two main soil types exist at the Palmer Airport, a cobbly, sandy gravel (stream/glacial deposits), and a sandy silt (loess). The coarse-grain soil was deposited as glaciers receded and the rivers developed. Sediment was transported by the melt water via large braided streams; the Matanuska and Knik Rivers. The Matanuska River and the Knik River were and still are fed by glaciers, which produce tremendous volumes of sediment particularly sand and gravel. Windblown sediment from the glacial river floodplain created the loess. Loess deposits which mantle the sands and gravels, developed as the rivers and glaciers decreased to their present day extent.

The subsurface conditions at the sites are depicted on the profile in Figures 3 through 12 and in the boring logs presented in Appendix A, Figures A3 through A19. The soils

encountered were generally gravelly sand and sandy gravel overlain by silt with varying amounts of sand, gravel, and organics. The silt deposits were overlain by a structural section at the runway and taxiway. Auger refusal (Boring BH-10) and sample refusal (Borings BH-2, BH-6, BH-7, BH-9 and BH-12) indicate cobbles and boulders are present in the sands and gravels.

Groundwater was not encountered in any of the borings. Groundwater depths in the area are generally quite deep, at about 100 feet. The Matanuska River, which would supply the groundwater system in the immediate vicinity, is approximately 50 feet below the current ground elevation. Seasonal fluctuations in the groundwater table may occur due to variations in snowfall, rainfall, and temperature. Due to the relatively level nature of the surface, we do not expect the groundwater table to vary more than a few feet throughout the year.

5.1 Runway and Taxiway

Borings BH-1 through BH-14 were advanced on Runway 9/27 and Taxiway B. The subsurface profiles for Runway 9/27 are presented in Figures 3 through 7, and for Taxiway B in Figures 8 through 12. The borings encountered a structural section of slightly silty, sandy gravel that varied in thickness from 1.7 to 2.7 feet. Grain size analyzes indicated fines contents ranging from 5.9 to 18.5 percent classifying the section soils as non to moderately frost susceptible (NFS to F2). Moisture contents below 5 percent indicate dry conditions Blow counts indicated densities of loose to medium dense in this layer.

A layer of sandy silt (loess) was encounter in the borings immediately below the structural section. Thickness of the silt layer was about 2.5 inches in Boring BH-9 to varying from about 2 to 9.5 feet thick in the remaining borings. The loess density varied greatly from very soft to stiff, though some of the higher blow counts may have been influenced by underlying gravel layers. Moisture contents ranged from 15 to 38 percent. Below about 30 percent moisture content, silts are on the dry side of optimum. Sand contents ranged from 18 to 44 percent. The frost classification for all of silts encountered is F4 highly frost susceptible.

Underlying the silts was a medium dense to very dense layer of sandy gravel with trace to slight amounts of fines. This layer continued to the depth of borings. Fines content was typically less than 5 percent. A layer of silty, sandy gravel was encountered at Boring BH-2 from15 feet to boring completion. Based on sample refusals cobbles/boulders occur in this layer and are probably about 10 to 20 percent of the soil. The sands and gravels are non-frost susceptible (NFS). Moisture contents generally ranged from approximately 1 to 4 percent.

5.2 Commercial Apron

Borings BH-15 through BH-17 were advanced in the area of the proposed commercial apron expansion. The surface consisted of tall grasses and about a 6-inch organic root mat, underlain by sandy silt with organics. The silt layer was approximately 5 to 6.5 feet deep. The consistency of this layer was soft. Moistures ranged from 24 to 50 percent at the surface, the organics increase the moisture content, and 11 to 15 percent at 2.5 feet. Fines content ranged from 65 to 85 percent.

At Boring BH-15, silty, sandy gravel with 13.4 percent fines and a frost classification of F2 was encountered from 5 to 10 feet. All other samples recovered underlying the loess layer were sandy gravel with trace silt to slightly silty, sandy gravel. This soil occurred to the depth of the boring. Moistures ranged from 1.7 to 2.3 percent, which is slightly dry of optimum.

6.0 CLIMATOLOGY

Palmer is located in a transitional climatic zone near the confluence of the Matanuska River and Knik River. The zone is characterized by moderate diurnal and annual temperature variations, moderate annual precipitation, and strong surface winds. The Environmental Atlas of Alaska and the Alaska Department of Community and Economic Development provided the following information used for this project:

Mean Annual Temperature	36 ⁰ F
Mean Annual Precipitation	16.5 in.
Mean Annual Snowfall	50 in.
Thawing Index	3000 degree days
Freezing Index	2250 degree days
Seasonal Lag	21 days

Winds for the Palmer area are generally from the east and north coming from the Knik River Valley and the Matanuska River Valley. Design wind loads for the area are 40 psf. Design snow loads for the area are 40 psf.

7.0 ENGINEERING ANALYSIS & RECOMMENDATIONS

The design of the structural sections for the runway, taxiway, and commercial apron require an understanding of the strength of the underlying soils, frost-susceptibility, the climate influencing the frost penetration, and the design aircraft load. There are three

acceptable design methodologies: the California Bearing Ratio (CBR), the FAA Soil Group, and the Asphalt Pavement Institute model. The CBR method and FAA soil group are used by the FAA circular AC 150/5320-6D. As part of the CBR method, the frost characteristics of the soils are analyzed using two different procedures for highly frost susceptible F4 soils: the Complete Protection procedure and the Limited Subgrade Frost Penetration procedure. A third method, the Reduced Subgrade Strength Method, is applicable to slightly to moderately frost susceptible F1 to F3 soils. The loess underlying the existing structural section is a highly frost susceptible, F4, soil.

CBR values are related to the density of the soils. CBRs are not typically directly obtained in the field due to the cost and size of the specialized equipment needed. The CBR values used in this design were estimated based on the fines content, the moisture contents, the unit weight of the soils, and the field engineer's estimate of soil densities at the time of drilling.

Based on the silt (loess) characteristics, an estimated CBR value of 10 was used for design of the structural section. This value assumes that all soft organics and organic rich silts will be removed.

To accommodate frost penetration into the subsurface, the sections developed based on CBR value were checked for frost using the Complete Protection procedure and the Limited Subgrade Frost Penetration procedure. The Complete Protection procedure is used when frost heaving can not be tolerated and results in a structural section of 80 to 110 inches of non-frost susceptible material. This method is used typically when the section will be paved and large/heavy aircraft are the design aircraft. The Limited Subgrade Frost Penetration procedure is based on the theory of holding frost heave to a tolerable level by designing the non-frost susceptible (NFS) structural section to sixty five percent (65%) of the depth of frost penetration.

7.1 Runway and Taxiway

The pavement section for Runway 9/27 and Taxiway B is based on B-II aircraft with a Beech Super King Air as the design aircraft having a maximum take off weight of 12,500 pounds. Using a CBR of 10, this produces a structural section of 8 inches comprised of 2 inches asphalt cement pavement, 3 inches base course, and 3 inches subbase.

Since the runway and taxiway are not handling large/heavy aircraft, the Limited Subgrade Frost Penetration procedure instead of the Complete Protection procedure was used to check the structural section of 8 inches for frost penetration. Runway 9/27 handles light-load aircraft at high speeds and will therefore need to be designed to a higher standard than the taxiway, decreasing the likelihood of movement due to heaving.

Two alternative structural sections are presented in Table 1. Alternative A is based on constructing the runway on the loess. Using the Limited Subgrade Frost Penetration procedure this produces a 54-inch structural section. Alternative B is based on excavating all the loess and constructing the section on the native sand and gravel. This produced a structural section of 48 to 136 inches thick depending upon the thickness of the loess.

Material	Layer Thickness (in.)			
Туре	Runway (Alternative A)	Runway (Alternative B)	Taxiway	
Asphalt	3	2	2	
Base	6	6	4	
Subbase	45	40-130	36	
Total	54	48-138	42	

Table 1 – Recommended Structural Sections

If the runway is reconstructed according to Alternative A, there is a possibility of some movement in late winter and early spring. Differential settlement may be a problem due to variable depths of the silt (F4). If constructed according to Alternative B, the runway will rest on the native sandy gravels (NFS to F2). The life of the runway will be extended due to its structural integrity.

The taxiway handles light-load aircraft, but at much lower speeds than the runway. More movement due to heaving can be tolerated. Long term performance of the pavement along other aprons and taxiways at the airport has been good. These have been constructed with 2 inches of asphalt, 4 inches of base course, and 36 inches of subbase. Table 1 presents the taxiway structural section.

In order to minimize differential settlement between the above sections and the crossrunway section or other taxiways that intersect the proposed taxiway and runway reconstruction, the above sections should be feathered into the existing sections. The existing sections should be excavated at a slope of about 45 degrees and the above sections created over this excavation with the subbase layer diminishing in thickness within the original runway section. When placing the asphalt, care should be taken to overlap joints and create water tight seals.

7.2 Commercial Apron

The commercial apron's pavement section is based on B-III aircraft with a DC-6 as the design aircraft with a maximum take off weight of 104,000 pounds. Using a CBR of 10 for the loess, the overall thickness of the apron structural section is 30 inches including 4 inches of asphalt, 6 inches of base course, and 20 inches of subbase.

The commercial apron will be expanded to handle medium to heavy-load aircraft. It will, however, be used at low speeds; therefore, some movement can be tolerated. We checked the above apron structural section against the Limited Subgrade Frost Penetration procedure. The recommended structural section is presented in Table 2.

Table 2 – Recommended Structural Section			
Material Type	Layer Thickness (in.)		
	Limited Subgrade		
Asphalt	4		
Base	6		
Subbase	48		
Total	58		

 Table 2 – Recommended Structural Section

7.3 Quality Control

The subbase soils below the paved areas should be placed as uniform as possible. The subgrade surface should be sloped to direct drainage away from the pavement section. By controlling the water that reaches the subgrade, internal seasonal movements within the section will be limited with the result being less total heave and an extended pavement life.

The performance of the pavement is controlled by the details of construction, and by the quality of the materials that will be imported to the site, placed, and compacted to develop the needed structural section. Quality control inspection is strongly recommended with support soil and asphalt testing at regular intervals to be sure that the intent of the specification is met.

7.4 Drainage

Groundwater was not encountered in the borings. To provide further product protection regardless of the option chosen, we recommend that the surface be designed to encourage surface water flow to the edges, catch basins, and to a collection system and away from the highly frost susceptible soils.

7.5 Fill and Compaction

Imported fill to bring the site to proper grade or to construct the pavement section should be granular and consist of a reasonably well graded mixture of sand and gravel. The

subbase should meet the gradation requirements for the City of Palmer Type IIA as shown in Figure 13. The existing structural section of 1.7 to 2.7 feet can be re-used in the base of the excavation. The existing structural section from the runway and taxiway typically are NFS except for local pockets up to 10 to 18 percent fines. All of the soils in the existing structural sections can be re-used from the base of excavation up to about 48 inches below the finished grade. The existing asphalt can be rotomilled, stockpiled and reused in the base of excavation, if it can be compacted to 95 percent of maximum dry density.

The base course should meet the gradation requirements of City of Palmer, Leveling Course presented in Figure 13. All fills within the pavement sections should be placed in lifts not exceeding 12-inches in loose thickness and compacted to a percentage of the Modified Proctor Density as specified in Table 3. The Modified Proctor Density is determined using ASTM test method D-1557.

Table 5 Compaction Requirements			
Material Type	Recommended Compaction		
Asphalt	Per FAA Specifications		
Base	100 %		
Subbase	95 %		

Table 3	– Com	paction	Rea	uirements
14510 0	00	paolion		an 011101110

The subgrade material is loess in origin. Loess has been wind deposited with particles in "loose" position, but has developed some "structure" that gives it a degree of strength. When undisturbed, it is stiff and can have much greater strength than the same soil when disturbed. Attempts to compact the silt when the moisture is too high will cause it to weaken and pump. For this reason, it is recommended that the base and subbase be compacted as specified, and the subgrade be left undisturbed. Compaction of the subbase and base should not be attempted in the spring while the silt subgrade is still thawing.

If during compaction of the first lift of subbase over the silts drives the granular material into the silts, a separation blanket may be needed to keep the subbase from migrating into the silts. Excavation of the silts and placement of the first lift of subbase should occur relatively concurrently. Wet weather will add moisture to the silt subgrade resulting in lose of strength, pumping of the silts, and possible migration of the subbase into the silts.

8.0 CLOSURE AND LIMITATIONS

The analysis, conclusions, and recommendations contained in this report are based on site conditions as they presently exist and further assume that the exploratory borings

are representative of the subsurface conditions throughout the site, that is, that the subsurface conditions everywhere are not significantly different from those disclosed by the exploration. If during construction, subsurface conditions different from those encountered in the exploratory borings are observed or appear to be present beneath excavations, advise us at once so we can review these conditions and reconsider our recommendations when necessary.

If substantial time has elapsed between submission of this report and the start of work at the site, or if conditions have changed because of natural causes or construction operations at or adjacent to the site, we recommend that this report be reviewed to determine the applicability of the conclusions and recommendations considering the time lapse or changed conditions.

Unanticipated soil conditions are commonly encountered and cannot be fully determined by merely taking soil samples or borings. Such unexpected conditions frequently require additional expenditure to attain a properly constructed project. Therefore, some contingency fund is recommended to accommodate such potential extra costs.

Prepared by: Hattenburg Dilley & Linnell, LLC

Lorie M. Dilley, P.E. C.P.G. Principal Geotechnical Engineer

Ë Palmer

H:\jobs\05-021 Palmer Airport Design 2005\CAD\Drawings\Geotech\05021_geo_fig03-fig07, 1=30, 12/01/05 at 08:34 by LAYOUT: FiG7 XREF: 05021_00_BD01, 05021_00_X01

Ϋ́

Airport

È

H:\jobs/05-021 Polmer Airport Design 2005\CAD\Drawings\Geotech\05021_geo_fig08-fig12, 1=30, 12/01/05 at 08:34 by LAYOUT: FIGURE 9 XRFF: 05021 00 BDD1. 05021_00_X01

H:\jobs\05-021 Palmer Airport Design 2005\CAD\Drawings\Geatech\05021_geo_fig08-fig12, 1=30, 12/01/05 LaYOUT: FIGURE 10 XREF: 05021_00_BB01, 05021_00_X01

08:34

H:\jobs\05-021 Palmer Airport Design 2005\CAD\Drawings\Geotech\05021_geo_fig08-fig12, 1=30, 12/01/05 at 08:34 by LAYOUT: FiGURE 11 XREF: 05021_00_BD01, 05021_00_X01

H:\jabs\05-021 Palmer Airport Design 2005\CAD\Drawings\Geotech\D5021_geo_fig08-fig12, 1=30, 12/D1/05 at 08:34 by LAYOUT: FiGURE12 XRFF: 05021 00 BDD1. 05021_00 X01

Š

LEVELING COURSE

SIEVE SIZE

PERCENT PASSING BY WEIGHT

1"	100
3/4"	70-100
3/8"	50-80
NO. 4	35-65
NO. 8	20-50
NO. 50	10-30
NO. 200	3-8 *

* THE FRACTION OF MATERIAL PASSING THE NO. 200 SIEVE SHALL NOT BE GREATER THAN 75% OF THE FRACTION PASSING THE NO. 50 SIEVE

TYPE II-A BASE

SIEVE SIZE

PERCENT PASSING BY WEIGHT

3"	100
3/4"	50-100
NO. 4	25-60
NO. 10	15-50
NO. 40	4-30
NO. 200	2-6 *

* THE FRACTION OF MATERIAL PASSING THE NO. 200 SIEVE SHALL NOT BE GREATER THAN 20% OF THE FRACTION PASSING THE NO. 4 SIEVE

TYPE II SUBBASE

SIEVE SIZE

PERCENT PASSING BY WEIGHT

100
70-100
55-100
45-85
20-60
<i>12-50</i>
4-30
2-6 *

* THE FRACTION OF MATERIAL PASSING THE NO. 200 SIEVE SHALL NOT BE GREATER THAN 20% OF THE FRACTION PASSING THE NO. 4 SIEVE

HATTENBURG DILLEY & LINNELL Engineering Consultants	PALMER AIRPORT REHABILITATION GEOTECHNICAL REPORT GRADATION REQUIREMENTS		
ENGINEERING	PALMER MUNICIPAL AIRPRORT		
EARTH SCIENCE		PALMER, ALASH	(A
PROJECT MANAGEMENT	DATE: 11/30/05	DRAWN BY:	SHEET: FIGURE 13
(907) 564-2120 • PLANNING www.HDLalaska.com	SCALE: NTS	CHECKED BY:	JOB NO.: 05-021

APPENDIX A

Figure A-1	Unified Soil Classification System
Figure A-2	Municipality of Anchorage Frost Classification
Figure A-3 to A-19	Log of Borings
Figure A-20 to A-21	Grain Size Distribution Graphs

Criteria for Assigning Group Symbols and Names			So	Soil Classification	
			Gro	Generalized Group Descriptions	
	GRAVELS	CLEAN GRAVELS	GW	Well-graded Gravels	
COARSE-GRAINED	50% or more of	Less than 5% fines	GP	Poorly-graded Gravels	
SOILS	retained on	GRAVELS with fines	GM	Gravel & Silt Mixtures	
More than 50% retained on	No. 4 sieve	More than 12% fines	GC	Gravel & Clay Mixtures	
No. 200 sieve	SANDS	CLEAN SANDS	SW	Well-graded Sands	
	More than 50% of	Less than 5% fines	SP	Poorly Graded Sands	
	passes	SANDS with FINES	SM	Sand & Silt Mixtures	
	No. 4 sieve	More than 12% fines	SC	Sand & Clay Mixtures	
		INORGANIC	ML	Non-plastic & Low Plasticity Silts	
	SILTS AND CLAYS		CL	Low-plasticity Clays	
FINE-GRAINED SOILS 50% or more	50% or less	ORGANIC	OL	Non-plastic and Low Plasticity Organic Clays Non-plastic and Low Plasticity Organic Silts	
passes the No. 200 sieve			СН	High-plasticity Clays	
	SILTS AND CLAYS	INORGANIC	МН	High-plasticity Silts	
	greater than 50%	ORGANIC	ОН	High plasticity Organic Clays High Plasticity Organic Silts	
HIGHLY ORGANIC SOILS	Primarily organic matter, of and organic odor	dark in color,	PT	Peat	
<u></u>	G For classifica fine-grained G Equation of Horizontal then PI= 0	tion of fine-grained soils and fraction of coarse-grained soils. If "A" line at PI= 4 to LL= 25.5, .73 x (LL-20)	LINE .	A: LINE	

HATTENBURG DILLEY & LINNELL Engineering Consultants		PALMER AIRPORT REHABILITATION GEOTECHNICAL REPORT UNIFIED SOIL CLASSIFICATION			
•	ENGINEERING		PALMER MUNICIPAL AIRPORT		RT
•	EARTH SCIENCE		PALMER, ALASKA		
•	PROJECT MANAGEMENT		DATE: 11/30/05	DRAWN BY:	SHEET: FIGURE A-1
•	PLANNING	(907) 564-2120 www.HDLalaska.com	SCALE: NTS	CHECKED BY:	JOB NO.: 05-021

FROST CLASSIFICATION (modified after Municipality of Anchorage Standards)

GROUP	SOIL TYPE	P200	TYPICAL SOILS
NFS	Sandy Soils Gravelly Soils	0 to 3 0 to 6	SW, SP GW, GP, GW-GM, GP-GM
F1	Sandy Soils Gravelly Soils	3 to 6 6 to 13	SW, SP, SW-SM, SP-SM GM, GW-GM, GP-GW
F2	Sandy Soils Gravelly Soils	6 to 19 13 to 25	SP-SM, SW-SM, SM GM
F3	Sands, except very fine silty sands	Over 19	SM, SC
	Gravelly Soils	Over 25	GM, GC
	Clays PI > 12		CL, CH
F4	All Silts		ML, MH
	Very fine silty sands	Over 19	SM, SC
	Clays, PI < 12		CL, CL-ML
	Varved clays and other fine grained, banded sediments		<i>CL and ML CL, ML, and SM; CL, CH, and ML; CL, CH, ML, and SM</i>

P200 = percent passing the number 200 sieve

HATTENBURG DILLEY & LINNELL Engineering Consultants ENGINEERING EARTH SCIENCE	PALMER AIRPORT REHABILITATION GEOTECHNICAL REPOR FROST CLASSIFICATION PALMER AIRPORT PALMER, ALASKA		ECHNICAL REPORT N
PROJECT MANAGEMENT	DATE: 11/30/05	DRAWN BY:	SHEET: FIGURE A-2
(907) 564-2120 • PLANNING www.HDLalaska.com	SCALE: NTS	CHECKED BY:	JOB NO.: 05-021

5:57 11/17/05 GDT **JDEC** GP. 500 BOREL

05-021

Appendix C

Boring Log Key Frost Design Soil Classification System Description and Classification of Frozen Soils Peat and Organic Soil Classification System

BORING LOG KEY

Su	Soil Classification				
	(from ASTM Internation	nal Standard D	2487) ^A	Group Symbol	Group Name ^B
	Gravels	Gravels with	$C_u \ge 4$ and $1 \le C_c \le 3^D$	GW	Well-graded gravel ^E
	(More than EOV of	< 5% fines ^c	$C_u < 4$ and/or $[C_c < 1$ or $C_c > 3]^D$	GP	Poorly graded gravel ^E
	coarse fraction	Gravels with	Fines classify as ML or MH	GM	Silty gravel ^{E,F,G}
Coarse-grained Soils	retained on No. 4 sieve)	> 12% fines ^c	Fines classify as CL or CH	GC	Clayey gravel ^{E,F,G}
(More than 50% retained on	Sands	Sands with	$C_u \ge 6$ and $1 \le C_c \le 3^D$	SW	Well-graded sand ¹
	(50% or more of coarse	< 5% fines ^H	$C_u < 6$ and/or $[C_c < 1 \text{ or } C_c > 3]^D$	SP	Poorly graded sand ^l
	fraction passes No. 4 sieve)	Sands with > 12% fines ^H	Fines classify as ML or MH	SM	Silty sand ^{F,G,I}
			Fines classify as CL or CH	SC	Clayey sand ^{F,G,I}
		Inorgania	PI>7 and plots on or above "A" line	CL	Lean clay ^{K,L,M}
	Silts and Clays (LL<50)	inorganic	PI<4 or plots below "A" line ^J	ML	Silt ^{K,L,M}
Fine-grained Soils		Organic	LL - Oven dried/LL - Not dried <0.75	OL	Organic clay/silt ^{K,L,M,N/O}
(More than 50% passes the		Inorganic	PI plots on or above "A" line	СН	Fat clay ^{K,L,M}
100. 200 Sievej	Silts and Clays (LL≥50)	linorganic	PI plots below "A" line	МН	Elastic silt ^{K,L,M}
		Organic	LL - Oven dried/LL - Not dried <0.75	ОН	Organic clay/silt ^{K,L,M,P/Q}
Highly Organic Soils	Primarily organic matte	r, dark in color	, and organic odor	РТ	Peat

NOTES:

60

50

40

30

20

10

0

PLASTICITY INDEX (PI)

soils.

Visual soil descriptions performed in accordance with ASTM D2488 Lowercase USCS abbreviation indicates field classification Uppercase USCS abbreviation indicates laboratory classification

^ABased on the material passing the 3-in. (75-mm) sieve

^BIf field sample contained cobble or boulders, or both, add "with cobbles or boulders, or both" to group name

^cGravels with 5 to 12% fines require dual symbols:

GW-GM well-graded gravel with silt

GW-GC Well-graded gravel with sht GW-GC Well-graded gravel with clay GP-GM poorly graded gravel with silt

GP-GC poorly graded gravel with clay

For classification of fine-grained soils and fine-grained fraction of coarse-grained

Equation of "A" – line Horizontal at PI = 4 to LL = 25.5, then PI = 0.73 (LL - 20)

Equation of "U" - line Vertical at LL = 16 to PI = then PI = 0.9 (LL - 8)

ML

16 2

 D C_u=D₆₀/D₁₀, C_c=(D₃₀)²(D₁₀xD₆₀) E If soil contains \geq 15% sand, add "with sand" to group name F If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM

^GIf fines are organic, add "with organic fines" to group name

^HSands with 5 to 12% fines require dual symbols:

SW-SM well-graded sand with silt

SW-SC well-graded sand with clay SP-SM poorly graded sand with silt

SP-SC poorly graded sand with clay

¹If soil contains ≥15% gravel, add "with gravel" to group name

^JIf Atterberg limits plot in hatched area, soil is a CL-ML, silty clay

^KIf soil contains 15 to < 30% plus No. 200, add "with sand" or "with gravel", whichever is predominant ¹If soil contains \geq 30% plus No. 200, predominantly sand, add "sandy" to group name

^MIf soil contains \geq 30% plus No. 200, predominatly gravel, add "gravelly" to group name

^NPI \geq 4 and plots on or above "A" line

^oPI < 4 or plots below "A" line

PPI plots on or above "A" line

^QPI plots below "A" line

	GRAIN SIZE										
Size Class	Inches	mm									
Boulders	>12 inches	>300									
Cobbles	3 to 12	75 - 300									
Gravel											
Coarse	3/4 - 3	19.0 - 75									
Fine	3/16 - 3/4	4.76 - 19.0									
Sand	-										
Coarse	1/16 - 3/16	2.0 - 4.76									
Medium	1/64 - 1/16	0.42 - 2.0									
Fine	1/256 - 1/64	0.074 - 0.42									
Silt and Clay	<1/256	<0.074									

RELATIVE SO	L DENSITY		COMPONENT PROPORTION (Visual)			
Description	N-Value					
Very Loose	0 - 4					
Loose	5 - 10		Term	Range		
Modium Donco	11 20		Trace	0 - 5%		
	11-50	-	Little	5 - 15%		
Dense	31 - 50	_	Somo	15 200/		
Very Dense	>50		301110	15 - 50%		
		-	And	30 - 50%		

	M)L									
)	30	40	50	60	70							
		LIQUID LIMIT (LL)										

0

8

U" LINE

S,

OK

MH or OH

80

90

SAMPLE TYPES									
Symbol	Description								
SS	Split Spoon								
MSS	Modified Split Spoon								
G	Grab								
ST	Shelby Tube								
GP	Push Sample								
C	Coro								

SOIL CONSISTENCY										
Description	N-Value	Pocket Pen.								
Very Soft	<2	<0.25								
Soft	2 - 4	0.25 - 0.5								
Medium	4 - 8	0.5 - 1.0								
Stiff	8 - 15	1.0 - 2.0								
Very Stiff	15 - 30	2.0 - 4.0								
Hard	>30	>4.0								

100

110

	1
	_

	- , -	- /				
	1/16 - 3	8/16	2.0) - 4.76		
	1/64 - 1	/16	0.4	42 - 2.0		
	1/256 -	1/64	0.0	74 - 0.42		
	<1/25	56	<	0.074		
DEI	NSITY	0	СОМР	ONENT		
N-	Value	F	PROPORTION			
(0 - 4		(VIS	ual)		
5	- 10	Te	erm	Range		
-	-	Tr	ace	0 - 5%		

FROST DESIGN SOIL CLASSIFICATION

US Army Corps of Engineers (USACE) Methodology

The following frost design soil classification was developed by the USACE for describing the potential frost susceptibility of soils. The standard is published in USACE, EM 1110-3-138, "Pavement Criteria for Seasonal Frost Conditions," April 1984.

FROST GROUP	GENERAL SOIL TYPE	% FINER THAN 0.02 mm BY WEIGHT	TYPICAL USCS SOIL CLASS
	(a) Gravels	0-1.5	GW, GP
	Crushed Stone		
NI S. /	Crushed Rock		
	(b) Sands	0-3	SW, SP
	(a) Gravels	1.5 -3	GW, GP
PFS(2)	Crushed Stone		
115	Crushed Rock		
	(b) Sands	3-10	SW, SP
S1	Gravelly Soils	3-6	GW, GP, GW-GM, GP-GM, GW-GC, GP-GC
S2	Sandy Soils	3-6	SW, SP, SW-SM, SP-SM, SW-SC, SP-SC
F1	Gravelly Soils	6-10	GM, GC, GW-GM, GP-GM, GW-GC, GP-GC
F2	(a) Gravelly Soils	10-20	GW, GP, GW-GM, GP-GM, GW-GC, GP-GC
FZ	(b) Sands	6-15	SM, SW-SM, SP-SM, SC, SW-SC, SP-SC, SM-SC
	(a) Gravelly Soils	Over 20	GM, GC, GM-GC
F3	(b) Sands, except very fine silty sands	Over 15	SM, SC, SM-SC
	(c) Clays, PI>12		CL, CH
	(a) Silts		ML, MH, ML-CL
	(b) Very fine silty sands	Over 15	SM, SC, SM-SC
F4	(c) Clays, PI<12		CL, ML-CL
	(d) Varied clays or other fine-grained banded sediments		CL or CH layered with ML, MH, ML-CL, SM, SC, or SM-SC

(1) Non-frost susceptible

(2) Possibly frost susceptible, requires lab test for void ratio to determine frost design soil classification. Gravel with void ratio > 0.25 would be NFS; Gravel with void ratio < 0.25 would be S1; Sands with void ratio > 0.30 would be NFS; Sands with void ratio < 0.30 would be S2 or F2

Alaska Department of Transportation and Public Facilities (DOT&PF) Methodology

As shown above, the USACE standard is based in part on the percentage of material finer than 0.02 mm ($P_{0.02}$). The DOT&PF modifies the USACE standard by referencing the percentage of material finer than the #200 sieve, which is 0.075 mm, (P_{200}) rather than 0.02 mm. As reported in the Alaska Flexible Pavement Guide, the P_{200} value is typically twice that of the $P_{0.02}$; therefore, DOT&PF considers material with less than 6% by weight passing the #200, non-frost susceptible (NFS).

Municipality of Anchorage (MOA) Methodology

The MOA uses a simplified method based on the USACE methodology noted above. The MOA method is detailed in the Design Criteria Manual and summarized below. Note that the MOA method uses the P_{0.02} value rather than the P₂₀₀ value.

FROST GROUP	SOIL TYPE	PERCENTAGE FINER THAN 0.02 MILLIMETER BY WEIGHT	TYPICAL SOIL TYPES UNDER UNIFIED SOIL CLASSIFICATION SYSTEM
NFS	a. Gravels	0 to 3	GW, GP
	b. Sands	0 to 3	SW, SP
F-1	Gravelly soils	3 to 10	GW, GP, GW-GM, GP-GM
F-2	a. Gravelly soils	10 to 20	GM, GW-GM, GP-GM
	b. Sands	3 to 15	SW, SP, SM, SW-SM, SP
F-3	a. Gravelly soils	Over 20	GM, GC
	b. Sands, except very fine silty sands	Over 15	SM, SC
	c. Clays, PI>12		CL, CH
F-4	a. All silts		ML, MH
	b. Very fine silty sands	Over 15	SM, SC
	c. Clays, PI<12		CL, CL-ML
	d. Varied clays and other fine-grained,		CL, CL-ML
	banded sediments		CL, CH, ML, SM

* Municipality of Anchorage, Project Management & Engineering Department, Design Criteria Manual, January 2007.

DESCRIPTION AND CLASSIFICATION OF FROZEN SOILS

(Summarized from the Alaska Field Guide for Soil Classification)

PART I: Description of Soil Phase—Independent of Frozen State(a)												
	Major	Group	Sub-Gro	up				Pertinent Properties of Frozen	Guide for Construction	or Construction on Soils Subject to Freezing and Thawing		
	Description	Designation	Description	Designation	Fie	ld Identification		measured by physical tests to supplement field identification.	Thaw Characteristics	Criteria		
	Segregated		Poorly Bonded or Friable	Nf	Identify by visual exa of excess ice, use pro	mination. To det cedure under no	ermine presence te (c) below and	In-Place Temperature	Liqually Thaw-Stable	The potential intensity of ice segregation in a soil is dependent to a large degree on its void sizes and may		
ice is visible l (b Part II:	ice is not visible by eye (b)	N	No excess ice Well Bonded Excess Ice	Nb e	hand magnifying lens saturated, estimate o Low. Note presence larger particles.	hand magnifying lens as necessary. For soils not fully saturated, estimate degree of ice saturation: Medium, Low. Note presence of crystals, or of ice coating around larger narticles		Density and Void Ratio a) In Frozen State b) After Thawing in Place		be expressed as an empirical function of grain size as follows: Most inorganic soils containing 3 percent or more of		
Description of Frozen Soil	Converted		Individual ice crystals or inclusions	Vx	For ice phase, record Location Orientation	the following as Size Shape Th	applicable: ickness	Water Content (Total H ₂ O, including ice) a) Average		frost-susceptible. Gravels, well graded sands and silty sands, especially those approaching the theoretical maximum density curve, which contain 1.5 to 3		
(t	ice is visible		Ice coatings on particles	ngs on Vc Spac Les Vr Hard oriented tions Vr	Spacing Pattern of arrangement Length Hardness } Structure } per part III Below Color }			b) Distribution		percent finer than 0.02 mm by weight without being frost-susceptible. However, their tendency to occur		
	(Ice 1 inch or less in thicknoss) (b)	V	Random or irregularly oriented ice formations					a) Compressive b) Tensile c) Shear		interbedded with other soils usually makes it impractical to consider them separately.		
	the the start of		Stratified or distinctly oriented ice formations	Vs	Estimate volume o percent of total sa	Estimate volume of visible segregated ice present as percent of total sample volume		d) Adfreeze Elastic Properties Plastic Properties Usually Th Thermal Properties Unstable		criteria are likely to develop significant ice segregation and frost heave if frozen at normal rates with free water readily available. Soils so frozen will fall into the thaw-unstable category. However, they may also be classed as thaw-stable if frozen with insufficient water		
			Ice with soil inclusions	Ice + Soil Type	Designate material a as follows, usually or	aterial as ICE (d) and use descriptive terms sually one item from each group, as			Usually Thaw- Unstable			
Part III: <u>Description of</u> <u>Substantial</u> <u>Ice Strata</u>	lce (Greater than 1 inch in thickness)	lce	lce without soil inclusions	lce	Applicable: Hardness Stru Hard Clear Soft Cloudy (mass, Porous not indi- Candle crystals) Granul Stratifi	cture Color e.g.: Color- less d Gray ar Blue ed	Admixtures e.g.: Contains Thin Silt Inclusions	Ice Crystal Structure (using optional instruments.) a) Orientation of Axes b) Crystal size c) Crystal shape d) Pattern of Arrangement		to permit ice segregation. Soils classed as non-frost-susceptible (*NFS) under the above criteria usually occur without significant ice segregation and are not exact and may be inadequate for some structure applications: exceptions may also result from minor soil variations. In permafrost areas, ice wedges, pockets, veins, or other ice bodies may be found whose mode of origin is different from that described above. Such ice may be the result of long-time surface expansion and contraction phenomena or may be glacial or other ice which has been buried under a protective earth cover.		
								•				

DEFINITIONS:

<u>Ice Coatings on Particles</u> are discernible layers of ice found on or below the larger soil particles in a frozen soil mass. They are sometimes associated with hoarfrost crystals, which have grown into voids produced by the freezing action.

<u>Ice Crystal</u> is a very small individual ice particle visible in the face of a soil mass. Crystals may be present alone or in a combination with other ice formations.

Clear Ice is transparent and contains only a moderate number of air bubbles. (e)

Cloudy Ice is translucent, but essentially sound and non-pervious.

<u>Porous Ice</u> contains numerous voids, usually interconnected and usually resulting from melting at air bubbles or along crystal interfaces from presence of salt or other materials in the water, or from the freezing of saturated snow. Though porous, the mass retains its structural unity.

 $\underline{Candled \ lce}$ is ice which has rotted or otherwise formed long columnar crystals, very loosely bonded together.

<u>Granular Ice</u> is composed of coarse, more or less equidimensional, ice crystals weakly bonded together.

<u>Ice Lenses</u> are lenticular ice formations in soil occurring essentially parallel to each other, generally normal to the direction of heat loss and commonly in repeated layers.

<u>Ice Segregation</u> is the growth of ice as distinct lenses, layers, veins, and masses in soils, commonly but not always oriented normal to direction of heat loss.

Well-bonded signifies that the soil particles are strongly held together by the ice and that the frozen soil possesses relatively high resistance to chipping or breaking.

<u>Poorly-bonded</u> signifies that the soil particles are weakly held together by the ice and that the frozen soil consequently has poor resistance to chipping or breaking.

<u>Friable</u> denotes a condition in which material is easily broken up under light to moderate pressure.

<u>Thaw-Stable</u> frozen soils do not, on thawing, show loss of strength below normal, long-time thawed values nor produce detrimental settlement.

<u>Thaw-Unstable</u> frozen soils show on thawing, significant loss of strength below normal, long-time thawed values and/or significant settlement, as a direct result of the melting of the excess ice in the soil.

NOTES:

(a) When rock is encountered, standard rock classification terminology should be used.

(b) Frozen soils in the N group may on close examination indicate presence of ice within the voids of the material by crystalline reflections or by a sheen on fractured or trimmed surfaces. However, the impression to the unaided eye is that none of the frozen water occupies space in excess of the original voids in the soil. The opposite is true of frozen soils in the V group.

(c) When visual methods may be inadequate, a simple field test to aid evaluation of volume of excess ice can be made by placing some frozen soil in a small jar, allowing it to melt and observing the quantity of supernatant water as a percent of total volume.

(d) Where special forms of ice, such as hoarfrost, can be distinguished, more explicit description should be given.

(e) Observer should be careful to avoid being misled by surface scratches or frost coating on the ice.

Modified from: Linell, K.A. and Kaplar, C.W., 1966, *Description and Classification of Frozen Soils*, Proc. International Conference on Permafrost (1963), Lafayette, IN, U.S. National Academy of Sciences, Publ. 1287, pp 481-487.

PEAT AND ORGANIC SOIL CLASSIFICATION SYSTEM

(Summarized from Alaska Guide for Classification of Peat and Organic Soil)

INCREASING ORGANIC CONTENT

Appendix D

Boring Logs Test Pit Logs

PROJECT NUMBER : 18-001-15 **PROJECT** : Construct Taxiway N & Improve Airport Drainage **CLIENT** : City of Palmer

Total Depth: 11.3 feet Station / Location: near Taxiway J extension Equipment Type: CME 75 Lat/Long: 61.595526/-149.09918 Field Crew: Discovery Drilling Date: 11/4/2021 Elevation: Geologist: J. LaBelle Sample Data Ground Water Data **Drilling Method** USCS Classification Depth (feet) Bonded Zone Sample Type Depth (Feet) Soil Graphic Blow Count Time Recovery Number Sample N-Value Date Symbol SUBSURFACE MATERIAL 0 0.0 ORGANIC MAT 1 0.3 SILT, (ml); little sand, fine; trace gravel, fine; trace organics; brown to grayish brown, dry, ml very loose, F4 1 MSS Moisture =34.9% <u>۲</u> 1 4 3 3 2 P200 =84.4%, Sa =13.5%, Gr =2.1%, Moisture =36.6%, Org =4.9% 1 3 1 NSS S-2 3 2 4 1 5 Hollow-Stem Auger 5.0 moist 2 Moisture =28.2% 10 MSS S-3 6 6.0 22 Poorly-graded GRAVEL, (gp-gm); fine to coarse; subangular to subrounded, with sand, fine to coarse; little silt; gray, dry, broken cobble in sample gp-gm 12 N 0 Moisture =3.2% 20 r 7 7.5 Poorly-graded SAND, (sp-sm); fine to coarse; with gravel, fine to coarse; subangular to sp-sm ò 13 A USCS LOG OF TEST HOLE 18-001-15 PALMER TW N APRON E.GPJ HDL MODIFIED.GDT 7/19/22 subrounded; little silt; gray, dry 8 MSS S-4 refusal 50/4", Moisture =3.2% 12 9 10 refusal 50/3", Moisture =2.9% 12 MSS S-5 25 11 11.3 BOH Notes: 11.3 No free groundwater encountered. Auto Hammer X 340 lb. hammer with 30 in. drop Cathead Rope Method 140 lb. hammer with 30 in. drop Sheet Number 1 of 1

PROJECT NUMBER : 18-001-15 **PROJECT** : Construct Taxiway N & Improve Airport Drainage **CLIENT** : City of Palmer

Total Depth: 12.0 feet Station / Location: near Taxiway J extension Equipment Type: CME 75 Date: 11/4/2021 Lat/Long: 61.595466/-149.093045 Field Crew: Discovery Drilling Elevation: Geologist: J. LaBelle Ground Water Data Sample Data **Drilling Method** USCS Classification Bonded Zone Depth (feet) Sample Type Depth (Feet) Soil Graphic Blow Count Time Recovery Sample N-Value Number Date Symbol SUBSURFACE MATERIAL 0 0.0 ORGANIC MAT 1 1, 1, 0.7 1 SILT, (ml); little to some sand, fine; little to some organics; brown, dry ml MSS <u>۲</u> 1 4 Moisture =23.5% 3 3 2 2.5 SILT, (ml); little sand, fine; trace to little organics; brown to grayish brown, dry, very ml 1 loose, F4 3 P200 =87.5%, Sa =12.5%, Gr =0.0%, Moisture =25.3% 2 NSS S-2 3 1 4 2 5 5.0 Well-graded SAND, (sw-sm); fine to coarse; with gravel, fine to coarse; subangular to sw-sm 7 Hollow-Stem Auger subrounded; little silt; trace organics; brownish gray, dry, dense, broken cobble in sample 13 Moisture =3.3% MSS S-3 6 36 23 29 7 7.5 very dense, F2 47 A USCS LOG OF TEST HOLE 18-001-15 PALMER TW N APRON E.GPJ HDL MODIFIED.GDT 7/19/22 P200 =10.2%, Sa =47.6%, Gr =42.2%, Moisture =3.5% 8 14 MSS S-4 51 37 9 25 10 Moisture =2.1% 5 23 USS S-5 11 59 36 45 -12.0 12 BOH Notes: 12 No free groundwater encountered. Auto Hammer Cathead Rope Method 140 lb. hammer with 30 in. drop X 340 lb. hammer with 30 in. drop Sheet Number 1 of 1

LOG OF BORING

Station / Location: <i>Taxiway B</i> Lat/Long: 61.593719/-149.091398 Elevation:											Equ Fiel Geo	lipment Typ d Crew: <i>Dis</i> blogist: <i>J. La</i>	e: CME 75 covery Drillir aBelle	ng	Tota Date	Depth: <i>4.0 feet</i> : <i>11/4/2021</i>			
	_		Sar	nple	Da	ta					Gro	und Water	Data					_	
et)	thod	be						5	ne	<u> </u>	Depth (feet)								
(Fee	Mei	Ty	5	uno		sry	e	icati	d Zo	aphi	Time			4					
pth	lling	mple	mbe	S S	mple	COVE	/alu	CS	ndec	ŋ	Date			-					
De	D	Sal	N	Blo	Sai	Re	ź	Cla	Bo	Soi	o jiii boi			SUBSURFA	CE MATERIAL			-	
0 -				3	V			gw-gm			Well-grade fine to P200 =7.79	Vell-graded GRAVEL, (gw-gm); fine to coarse; subangular to subrounded, with san fine to coarse; little silt; brown, dry, loose, F1 200 =7.7%. Sa =45.4%. Gr =46.9%. Moisture =4.3%							
1 -	Sampling	MSS	°-1	5			9												
2 -	ous MPT (3 3															
	ntinu	S		4													2.0		
3 -	ပိ	WS	S-2	3			7	ml			SILT, (mI); Moisture =	with sand, 29.7%	fine to coars	e; trace grave	el, fine; brown, d	ry to moist	2.9		
4 -				I					Ķ	<u></u> BOH	Notes:						4.0		
										4	No free gro	oundwater e	ncountered.						
_																			
_																			
_																			
_																			
_																			
_																			
_																			
-																			
_																			
-	I					,					<u> </u>							_	
¥ لکا	auto Ha	ammer			Cath	nead	коре	wethod	L	140	וס. nammer with	1 30 in. drop	340 lb. har	nmer with 30 in. dr	ор		Sheet Number 1 of 1	1	

LOG OF BORING

Stat Lat/l Elev	ion / Long: /ation	Locat : <i>61.5</i> 1:	tion: 59400	Taxi)2/-1	iway 49.0	/ B 0927	705				Equipment Type: CME 75Total Depth: 4.0 feetField Crew: Discovery DrillingDate: 11/4/2021Geologist: J. LaBelleDate: 2000		
Sample Data											Ground Water Data		
eet)	letho	[ype		nnt				ation		plic	Depth (feet) Time		
th (F	Ing N	_ aldr	Jber	v Col	ble	over	alue	SSifica Ssifica		Grap	Date		
Dep	Drill	San	Nun	Blov	San	Rec	>-Z	USC Clas		Soil			
0 -				2				sp-sm		0	Poorly-graded SAND, (sp-sm); fine to coarse; some gravel, fine; little silt; brown, dry	0.0	-
-		S		1	I			ml			Moisture =6.0% SILT, (ml); little sand, fine; trace organics; light brown to brown, dry, very loose, F4		
1 -	mpling	MS	ပ္	2			3			\square	P200 - 69.1%, Sa $-10.9%$, Gi $-0.0%$, Moisture $-34.5%$		
-	PT Sa			2									
2 -	MF MF			2						\square	Moisture =34.3%		
-	ntinuc	S		1									
3 -	ŭ	MS	, v	2			3						
1				6									
4 -		-							В	ОН 4	Notes: No free groundwater encountered	4.0	
-													
-													
-													
4	Auto Ha	ammer	•		Catl	head	Rope	Method] 140	lb. hammer with 30 in. drop 🛛 340 lb. hammer with 30 in. drop Shee	t Number 1	of 1

LOG OF BORING

Stat Lat/I Elev	ion / Long: ⁄ation	Locat : <i>61.5</i> i:	tion: 19448	Taxi 37/-1	way 49.0	/ B 0950	003				Equ Fiel Geo	ipment Tyj d Crew: <i>Di</i> ologist: <i>J. L</i>	oe: CME 75 scovery Drillii aBelle	ng	Tc Da	tal Depth: <i>4.0 feet</i> ate: <i>11/4/2021</i>	
Sample Data							Gro	und Water	Data								
et)	thoc	be		īt				ы	ne	<u>.0</u>	Depth (feet)						
(Fee	Me	Ty	L.	uno		ery	e	icati	d Zo	aph	Time			_			
pth	ling	nple	mbe	S ≷	nple	NOC	/alu	CS	Jdec	٦ ٦	Date			-			
Del	Dril	Sai	N	Blo	Sai	Re	ź	Cla	Bo	Soi				SUBSU	IRFACE MATERIA	J	
0 -								sw-sm			Well-grade	d SAND. (sw-sm): fine	to coarse	e: with gravel, fine	to coarse: subangu	lar to 0.0
-				3	V						subro	unded; little	e silt; trace o	ganics; b	brown, dry, F2		
	D	ŝ	-	2				1	ŀ		P200 = 7.4	%, Sa =52.	7%, Gr = 39.9	9%, IVIOISI	sture =6.8%	organics: brown to	0.8
1 -	nplin	ž	γ	2			4	1111	F		brown	ish gray, d	ry, very loose	e, F4		organics, brown to	
-	Sar			•					ŀ	[.].].	P200 =73.6	6%, Sa =19	9.0%, Gr =7.4	1%, Moist	ture =33.4%		
2 -	MPT			2					ļ			25 40/					
	sno			2					ŕ	[][]	Noisture =	35.4%					
]	ntinu	~		2	I				ļ								
3 -	Co	MS8	S-2	2			4			[.].].							
-				2					ł							
4				2					ł	:							10
4 7									Ī	BOH 4	Notes:	undwatar	anaquistarad				
											No liee gio	oundwater	encountered.				
_																	
-																	
_																	
-																	
_																	
-																	
-																	
	l	1]
× ×	Auto Ha	ammer			Catl	head	Rope	Method	1	∐ 140) lb. hammer with	30 in. drop	X 340 lb. har	nmer with 30	0 in. drop		Sheet Number 1 of 1

LOG OF BORING

Station / Location: <i>Taxiway B</i> Lat/Long: <i>61.594958/-149.097285</i> Elevation:							285				Equipment Type: CME 75Total Depth: 4.0 feetField Crew: Discovery DrillingDate: 11/4/2021Geologist: J. LaBelleDate: 11/4/2021		
Sample Data						ta					Ground Water Data		
et)	thoc	be		It					ne	<u>.</u>	Depth (feet)		
(Fee	Me	e Ty	٣	Cour	۵	ery	e	licati	d Zo	aph	Time		
pth	lling	mpl	mbe	N N	npl	COV	Valu	SCS	nde	ii G	Symbol		
De	ā	Sa	ľ	B	Sa	Re	ź	ျပားပ	Bo	So	SUBSURFACE MATERIAL		
0 -				1				SP			Poorly-graded SAND, (SP); fine to coarse; with gravel, fine; trace silt; brown, dry, very	0.0	
-					V					° () o 0	loose, NFS P200 =4.8%, Sa =54.0%, Gr =41.2%, Moisture =4.0%		
1 -	buj	ISS	<u>7</u>	1			2			0 C			
	ampl	2		2						ο Ο Ο			
	DT S			1						. OC			
2 -	s MF			1				sm		<u>• ()</u>	SAND, (sm); fine to coarse; with gravel, fine; some to with silt; trace organics; brown,	-2.0	
-	nonu			•						10	dry, loose, broken cobble in sample		
3 -	Contil	SS	2	2			_		[0/			
-		Σ	0,	3			5			° /			
-				7						10			
4 -									Ī	BOH	Notes:	-4.0	
										4	No free groundwater encountered.		
_													
-													
_													
_													
-													
_													
-													
_													
-													
_	1												
-													
× ×	Auto Ha	ammer			Cat	head	Rope	Method	ł	140	0 lb. hammer with 30 in. drop 🛛 340 lb. hammer with 30 in. drop Sheet N	umber 1 c	of 1

LOG OF BORING

PROJECT NUMBER : 18-001-15 **PROJECT** : Construct Taxiway N & Improve Airport Drainage **CLIENT** : City of Palmer

Total Depth: 12.0 feet Station / Location: near proposed Taxiway N Equipment Type: CME 75 Lat/Long: 61.593077/-149.095534 Field Crew: Discovery Drilling Date: 11/3/2021 Elevation: Geologist: J. LaBelle Ground Water Data Sample Data **Drilling Method** USCS Classification Bonded Zone Depth (feet) Sample Type Depth (Feet) Soil Graphic Blow Count Time Recovery Sample N-Value Number Date Symbol SUBSURFACE MATERIAL 0 A 1. 0.0 ORGANIC MAT 1 0.3 SILT, (ml); some sand, fine; trace gravel, fine; trace organics; brown, dry to moist, very ml loose 1 MSS Moisture =39.3% <u>۲</u> 1 2 1 1 2 2.5 1 P200 =81.3%, Sa =17.1%, Gr =1.6%, Moisture =32.9%, Org =4.5% 3 3 NSS S-2 19 3.6 Well-graded GRAVEL, (gw-gm); fine to coarse; angular to subrounded, some sand, fine to coarse; little silt; brownish gray, dry, F1, broken cobble in sample 16 gw-gm 4 24 P200 =6.2%, Sa =27.9%, Gr =65.9%, Moisture =3.1% 5 5.0 Poorly-graded SAND, (sp-sm); fine to coarse; with gravel, fine to coarse; angular to sp-sm 8 Hollow-Stem Auger subrounded; little silt; brownish gray, dry, medium dense Moisture =3.6% 13 MSS S-3 6 26 13 20 7 7.5 broken cobble in sample ò 9 A USCS LOG OF TEST HOLE 18-001-15 PALMER TW N APRON E.GPJ HDL MODIFIED.GDT 7/19/22 Moisture =2.9% 8 8 MSS S-4 15 7 9 12 10 Moisture =3.2% 8 12 USS S-5 11 30 18 18 -12.0 12 BOH Notes: 12 No free groundwater encountered. Auto Hammer X 340 lb. hammer with 30 in. drop Cathead Rope Method 140 lb. hammer with 30 in. drop Sheet Number 1 of 1

LOG OF BORING

PROJECT NUMBER : 18-001-15 **PROJECT** : Construct Taxiway N & Improve Airport Drainage **CLIENT** : City of Palmer

Equipment Type: CME 75 Total Depth: 12.0 feet Station / Location: near proposed Taxiway N Lat/Long: 61.592447/-149.09217 Field Crew: Discovery Drilling Date: 11/3/2021 Elevation: Geologist: J. LaBelle Ground Water Data Sample Data **Drilling Method** USCS Classification Bonded Zone Depth (feet) Sample Type Depth (Feet) Soil Graphic Blow Count Time Recovery Number Sample N-Value Date Symbol SUBSURFACE MATERIAL 0 0.0 ORGANIC MAT 1 1, 1, 2 0.7 SILT, (ml); some sand, fine; trace organics; brown, dry ml MSS <u>۲</u> 1 4 Moisture =26.9% 2 3 2 2.5 very loose, F4 1 P200 =72.9%, Sa =26.7%, Gr =0.4%, Moisture =26.4%, Org =3.6% 3 1 NSS S-2 3 2 4 3 5 Auger 6 5.6 (**(**) Well-graded GRAVEL, (gw-gm); fine to coarse; angular to subrounded, with sand, fine to 12 gw-gm Hollow-Stem MSS S-3 coarse; little silt; gray, dry 6 27 Moisture =2.2% 15 25 7 7.5 very dense, broken cobble in sample 17 A USCS LOG OF TEST HOLE 18-001-15 PALMER TW N APRON E.GPJ HDL MODIFIED.GDT 7/19/22 Moisture =1.8% 8 29 MSS S-4 54 25 9 28 10 10.0 dense, F1 14 P200 =6.5%, Sa =38.2%, Gr =55.3%, Moisture =1.6% 15 USS S-5 11 46 31 28 -12.0 12 BOH 12 Notes: No free groundwater encountered. Auto Hammer Cathead Rope Method 140 lb. hammer with 30 in. drop X 340 lb. hammer with 30 in. drop Sheet Number 1 of 1

PROJECT NUMBER : 18-001-15 **PROJECT** : Construct Taxiway N & Improve Airport Drainage **CLIENT** : City of Palmer

Equipment Type: CME 75 Total Depth: 8.1 feet Station / Location: near proposed Taxiway N Lat/Long: 61.592256/-149.091097 Field Crew: Discovery Drilling Date: 11/3/2021 Elevation: Geologist: J. LaBelle Ground Water Data Sample Data **Drilling Method** USCS Classification Bonded Zone Depth (feet) Sample Type Depth (Feet) Soil Graphic Blow Count Time Recovery Number Sample N-Value Date Symbol SUBSURFACE MATERIAL 0 0.0 <u>// //</u>. . <u>//</u> ORGANIC MAT 1 0.4 SILT, (ml); little sand, fine; trace to little organics; light brown to brown, dry, loose ml 1 Moisture =25.6% MSS Ŷ. 1 6 5 2 2 3 2.8 very loose, F4 3 P200 =86.0%, Sa =13.4%, Gr =0.6%, Moisture =8.5% 1 Hollow-Stem Auger MSS S-2 3 2 4 3 5 5.0 SAND, (sm); fine; with silt; trace gravel, fine; light brown, dry, loose sm 4 Moisture =8.1% 5 MSS S-3 6 10 5 28 7 refusal 50/2", Moisture =7.2% MSS S-4 50 A USCS LOG OF TEST HOLE 18-001-15 PALMER TW N APRON E.GPJ HDL MODIFIED.GDT 7/19/22 8 8.1 BOH Notes: 8.1 No free groundwater encountered. Hole terminated due to broken spoon stuck down the hole. Auto Hammer Cathead Rope Method 140 lb. hammer with 30 in. drop X 340 lb. hammer with 30 in. drop Sheet Number 1 of 1

LOG OF BORING

PROJECT NUMBER : 18-001-15 **PROJECT** : Construct Taxiway N & Improve Airport Drainage **CLIENT** : City of Palmer

Total Depth: 6.0 feet Station / Location: near proposed access road Equipment Type: CME 75 Lat/Long: 61.593825/-149.101377 Field Crew: Discovery Drilling Date: 11/4/2021 Elevation: Geologist: J. LaBelle Sample Data Ground Water Data **Drilling Method** USCS Classification Bonded Zone Depth (feet) Sample Type Depth (Feet) Graphic Blow Count Time Recovery Number Sample N-Value Date Soil (Symbol SUBSURFACE MATERIAL 0 Well-graded GRAVEL, (gw-gm); fine to coarse; subangular to subrounded, with sand, fine to coarse; little silt; gray, dry, medium dense, F1 P200 =6.8%, Sa =38.1%, Gr =55.1%, Moisture =3.4% 0.0 gw-gm 6 7 MSS Ŷ. 1 15 8 5 2 Sampling 4 2.6 SILT, (ml); little sand, fine; little organics; brown, dry to moist, F4 2 ml Continuous MPT MSS S-2 P200 =90.6%, Sa =8.8%, Gr =0.6%, Moisture =36.7%, Org =5.3% 3 4 2 2 4.0 4 medium dense, broken cobble in sample 1 Moisture =20.6% 5 MSS S-3 5 15 10 11 6 6.0 BOH Notes: 6 No free groundwater encountered. Auto Hammer Cathead Rope Method 140 lb. hammer with 30 in. drop X 340 lb. hammer with 30 in. drop Sheet Number 1 of 1

LOG OF BORING

PROJECT NUMBER : 18-001-15 **PROJECT** : Construct Taxiway N & Improve Airport Drainage **CLIENT** : City of Palmer

Equipment Type: CME 75 Total Depth: 7.0 feet Station / Location: near proposed access road Date: 11/4/2021 Lat/Long: 61.593107/-149.101579 Field Crew: Discovery Drilling Elevation: Geologist: J. LaBelle Ground Water Data Sample Data **Drilling Method** USCS Classification Bonded Zone Depth (feet) Sample Type Depth (Feet) Soil Graphic Blow Count Time Recovery N-Value Number Sample Date Symbol SUBSURFACE MATERIAL 0 0.0 SILT, (ml); with sand, fine to coarse; some gravel, fine to coarse; subrounded; brown, ml 13 dry, medium dense 8 MSS Ŷ. 1 13 5 3 2 2.5 F4 Auger 5 P200 =45.3%, Sa =38.0%, Gr =16.7%, Moisture =16.5% 3 8 Hollow-Stem MSS S-2 26 18 3.8 Poorly-graded SAND, (sp-sm); fine to coarse; with gravel, fine to coarse; subangular to ò sp-sm 4 subrounded; little silt; brown, dry, broken cobble in sample 24 Moisture =2.8% 5 5.0 dense ò 13 Moisture =2.4% 23 MSS S-3 6 40 17 17 7 7.0 BOH 7 Notes: No free groundwater encountered. X Auto Hammer Cathead Rope Method 140 lb. hammer with 30 in. drop X 340 lb. hammer with 30 in. drop Sheet Number 1 of 1

LOG OF TEST PIT

TEST PIT # HDL-22

PROJECT NUMBER: 18-001-15

PROJECT: Construct Taxiway N & Improve Airport Drainage **CLIENT**: City of Palmer

Sam	nple D	Data	_			Ground Water Data Geologist: J. LaBelle Total Depth: 12.0 feet	
ple Type	Number	ble	S sification	en Zone	Graphic	Depth in (ft.) Field Clew. Oxy of Painter Public Works Date Public Time Equipment Type: John Deere 410E Date Location: near proposed infiltration basin	
Sam	Field	Sam	USC Clas	Froze	Soil (Symbol Lat/Long: 61.58/234/-149.086063	
				<u>, 1</u>	1 <u>,,1</u>	ORGANIC MAT	0.0
- - - - - - - - - - - -	S-1	- <u>19</u> 3	ml			SILT, (ml); with sand, fine; trace organics; brownish gray, dry Moisture =20.9%	—0.8
	S-2	mz	GW		0 0 0 0 0 0 1 1 2	Well-graded GRAVEL, (GW); fine to coarse; subangular to subrounded, with sand, fine to coarse; trace silt; gray, dry NFS P200 =1.0%, Sa =32.1%, Gr =66.9%, Moisture =1.5% Notes: No free groundwater encountered.	—9.0 — 12.0
						Sheet N	umber '

LOG OF TEST PIT

TEST PIT # HDL-23

PROJECT NUMBER: 18-001-15

PROJECT: Construct Taxiway N & Improve Airport Drainage **CLIENT** : City of Palmer

	Sar	nple D	Data			Ground Water Data	Geologist: J. LaBelle	Total Depth: 9.5 feet	
et)	/pe	ber		ion ne	ic	Depth in (ft.)	Field Crew: City of Palmer Public Works	Date: 11/5/2021	
(Fee	e Ty	Mum	Ð	ficati ז Zoi	raph	Time Date	Location: near proposed infiltration basin		
epth	ampl	eld N	ampl	SCS lassi ozer	oil G	Symbol	Lat/Long: 61.586474/-149.086371		
_ 0 -	ů	ΪĹ	ů	30 년	Ň		SUBSURFACE MATERIAL		
-					<u>x, 17</u> , <u>x,</u>	ORGANIC MAT			0.0
- 1				ml	///	SILT, (ml); with sand, fir	ne; trace organics; brownish gray, dry		—1.3
2 -									
3 -									
4 -			000		[.].].].[.].				
5 -	GRAB	S-1	<u> </u>			Moisture =26.9%			
6 -									
7 -									
- 8 -									
- 9 -			-000						-90
-	GRAB	S-2	<u></u>	sp	BOH	Poorly-graded SAND, (s	p); fine to coarse; with gravel, fine to course ay, dry	e; subangular to subrounded;	 95
					9.5	Moisture =3.2%			
						No free groundwater en	countered.		
								Sheet N	umber 1 of 1

B USCS LOG OF TEST PIT 18-001-15 PALMER TW N APRON E.GPJ HDL MODIFIED.GDT 7/19/22

LOG OF TEST PIT

TEST PIT # HDL-24

PROJECT NUMBER: 18-001-15

PROJECT: Construct Taxiway N & Improve Airport Drainage **CLIENT**: City of Palmer

Sample Data		Ground Water Data Geologist: J. LaBelle Total Depth: 11.0 feet	
eet) Fype mber ation	one	Depth in (ft.) Field Crew: City of Palmer Public Works Date: 11/5/2021 Time Equipment Type: John Deere 410E Equipment Type: John Deere 410E	
I Nun I Nun I Nun Iple	Grap	Date Location: near proposed infiltration basin	
Dep Sam USO Clas	Soil	SUBSURFACE MATERIAL	
0	<u>x</u> 1 ₁ .		0.0
Image:		SUBSURFACE MATERIAL ORGANIC MAT SILT, (ml); with sand, fine; trace organics; brownish gray, dry Moisture =28.2% Poorly-graded SAND, (sp-sm); fine to coarse; with gravel, fine to coarse; subangular to subrounded; little silt; gray, dry Moisture =2.9% Notes: No free groundwater encountered.	
		She	t Number 1 of

LOG OF TEST PIT

PROJECT NUMBER: 18-001-15

PROJECT: Construct Taxiway N & Improve Airport Drainage CLIENT : City of Palmer

	Sar	nple D	Data			Ground Water Data	Geologist: J. LaBelle	Total Depth: 2.0 feet
pth (Feet)	mple Type	ld Number	mple	CS tssification	il Graphic	Depth in (ft.) Time Date Symbol	Field Crew: <i>City of Palmer Public Works</i> Equipment Type: <i>John Deere 410E</i> Location: <i>near proposed infiltration basin</i> Lat/Long: <i>61.585503/-149.08603</i>	Date: 11/5/2021
De	Sai	Еie	Sal	Cla	Soi	Cymbol	SUBSURFACE MATERIAL	
	GRAB	<u>к</u> S-1		GP		ORGANIC MAT Poorly-graded GRAVEL trace silt; gray, dry P200 = 3.1%, Sa = 44.49 Notes: No free groundwater end	SUBSURFACE MATERIAL , (GP); fine to coarse; subangular to subrou NFS 6, Gr =52.5%, Moisture =4.5% countered.	
	L							

LOG OF BORING

PROJECT NUMBER : 18-001-15 **PROJECT** : Construct Taxiway N & Improve Airport Drainage **CLIENT** : City of Palmer

Total Depth: 9.0 feet Station / Location: near proposed Apron E Equipment Type: CME 75 Lat/Long: 61.59625/-149.10139 Field Crew: Discovery Drilling Date: 2/4/2022 Elevation: Geologist: J. LaBelle Ground Water Data Sample Data **Drilling Method** USCS Classification Bonded Zone Depth (feet) Sample Type Depth (Feet) Soil Graphic Blow Count Time Recovery Sample N-Value Number Date Symbol SUBSURFACE MATERIAL 0 GRAB 0.0 SAND, (sm); fine to coarse; with gravel, fine; subrounded to subangular; some silt; o <u>۲</u> smbrown, moist, F3 ŕ.ö. P200 =27.5%, Sa =42.5%, Gr =30.0%, Moisture =17.8% 'n 1 2 2.5 SILT, (ml); with sand, fine; trace gravel, fine; trace organics; brown, dry, loose ml 5 Moisture =27.0% 3 MSS S-2 3 7 4 Hollow-Stem Auger 4 5 8 MSS S-3 10 22 5.9 6 Poorly-graded GRAVEL, (GP); fine to coarse; subrounded to subangular, some sand, GP ß 12 fine to coarse; trace silt; gray, dry, NFS, fractured cobbles in sample P200 =4.1%, Sa =24.6%, Gr =71.3%, Moisture =3.2% Ċ 7 \bigcirc 7.5 Poorly-graded SAND, (sp-sm); fine to coarse; with gravel, fine to coarse; subrounded to sp-sm ò 8 A USCS LOG OF TEST HOLE 18-001-15 PALMER TW N APRON E.GPJ HDL MODIFIED.GDT 7/19/22 subangular; little silt; gray, dry, medium dense 8 Moisture =3.8% MSS S-4 14 26 12 ٠ď 9 9.0 BOH Notes: 9 No free groundwater encountered. Auto Hammer X 340 lb. hammer with 30 in. drop Cathead Rope Method 140 lb. hammer with 30 in. drop Sheet Number 1 of 1

A USCS LOG OF TEST HOLE 18-001-15 PALMER TW N APRON E.GPJ HDL MODIFIED.GDT 7/19/22

LOG OF BORING

Stat Lat/ Elev	tion / ′Long: vation	Loca : <i>61.5</i> ı:	tion: 5959:	neai 3/-14	r pro 19.09	9982 9982	sed / 2	Apron E		Equipment Type: CME 75Total Depth: 16.5 feetField Crew: Discovery DrillingDate: 2/4/2022Geologist: J. LaBelleDate: 2/4/2022	
	-		Sar	nple	Da	ta				Ground Water Data	
it)	thoc	be		Ţ				u o	<u>.</u>	Depth (feet)	
Fee	Me	Ţ	L _	uno		N	a a	cati	aph	Time	
oth (ling	nple	nbe	U ≥	nple	NOX6	alu	ssifi	υ Β Ο	Date	
Dep	Dril	Sar	Nur	Blo	Sar	Red	 z	Cla	Soil		
0 -		ŋ	<u><u></u></u>							SUBSURFACE WATERIAL	0.0
	-	GR⊿	ς, γ					5111	10	gray, dry, F3, Nf	
1 -	-	-							0 /	P200 =18.9%, Sa =61.7%, Gr =19.4%, Moisture =6.9%	
	-										
2 -	-								6		
	-				_				<u> </u>		-2.5
3 -	-			10				sm		Refusal 50/5". Moisture =24.7%	
	4	ISS	5-2	19	ľ		15				-35
4 -	-	2		26			45	sp-sm	0	Poorly-graded SAND, (sp-sm); fine to coarse; some gravel, fine to coarse; subrounded to angular; little silt; brown, dry, Nbn Moisture =4.7%	,
5 -	-				_				/		5.0
	-	s	_	12					°	Moisture =2.5%	
6 -	-	MS	ကိ	21			43				
	-			22							
7 -	-								0		
	lger									ν - 	-75
8 -	JAL	~		20	V			gp		Poorly-graded GRAVEL, (gp); fine to coarse; subangular to angular, with sand, fine to	1.0
	Ster	MS8	S-4	8	IX		24		0.0	Moisture =2.2%	
0 -	->oll			16							
9	모								0.0	·	
10									6.0		10.0
201 201				16							10.0
419		MSS	S-5	24	IX		39		, o . o		
- ۱۱ - ا	1	_		15					0.0°.		
	1								0.0		
E 12 -	1										
	1			17				gp-gm		Poorly-graded GRAVEL, (gp-gm); fine to coarse; subangular to angular, with sand, fine	-12.5
윜 13 -	1	1SS	9-6	29	I		57		Port	to coarse; little to some silt; gray, moist, very dense, difficult drilling action Moisture =4 3%	
- Ś	1	2		28			³		[õ		
- 14 -	1								ι Ω		
APR .	1										
z 15 - ≥	1			30						Moisture =3.1%	
	1	SS	1-1	31	I				e R		
[⊻] 16 -	1	Σ	0	20			51		600		
- 15 F		ł							BOH	Notes:	-16.5
- 001	-								16.5	No free groundwater encountered.	
Е 18											
님 -	-										
EST											
	-										
000											
	Auto Ha	ammer		Π	Cath	nead	Rope	Method	14	0 lb. hammer with 30 in. drop 🛛 340 lb. hammer with 30 in. drop Sheet Nu	imber 1 of

Total Depth: 9.0 feet Date: 2/4/2022

Hole #:HDL-33

0.0

2.5

5.0

7.5

9.0

Ground Water Data Sample Data **Drilling Method** USCS Classification Bonded Zone Depth (feet) Sample Type Depth (Feet) Soil Graphic Blow Count Time Recovery N-Value Sample Number Date Symbol SUBSURFACE MATERIAL 0 GRAB SAND, (sm); fine to coarse; some gravel, fine; some silt; brown, dry, F3 o <u>۲</u> smP200 = 20.3%, Sa = 53.6%, Gr = 26.1%, Moisture = 10.3% ŕ.ö. Ò. 1 2 SILT, (ml); with sand, fine; trace organics; brown, dry to moist, loose ml 3 Moisture =40.0% 3 MSS S-2 3 6 3 Hollow-Stem Auger 4 5 brown gray mottling, very loose 2 Moisture =32.9% MSS S-3 1 3 6 2 7 Poorly-graded GRAVEL, (gp-gm); fine to coarse; subrounded to subangular, with sand, medium to coarse; little silt; gray, dry, dense gp-gm 13 ſ 8 Ć Moisture =4.5% MSS S-4 15 36 21 9 Notes: 9 No free groundwater encountered.

A USCS LOG OF TEST HOLE 18-001-15 PALMER TW N APRON E.GPJ HDL MODIFIED.GDT 7/19/22

X Auto Hammer Cathead Rope Method 140 lb. hammer with 30 in. drop X 340 lb. hammer with 30 in. drop Sheet Number 1 of 1

Appendix E

Laboratory Test Results

ξ 2 15 PAI MER TW

8-001. SIZE

2 2 5 DAI MED

8-001 SIZE GRAIN

ĥ ξ 2 ≥

5 DAI MED -8-001 SIZE

Appendix F

Fleet Mix

Aircraft Type	FAARFIELD Designation	Design group	Takeoff Weight (lbs)	Estimated Annual Departures
Cessna 206	Cessna 206 Stationair	A-I	3300	18
Cessna 207	S-5	A-I	3800	5
DeHaviland DHC-2	S-5	A-I	5100	401
Casa 212	S-15	A-II	17000	241
Cessna 208	S-10	A-II	8000	717
Cessna 208B	Cessna 208B Grand Caravan EX	A-II	8750	10
Pilatus PC-12	S-10	A-II	10450	207
Douglas DC-3	DC3	A-III	25199	577
AC-500 Aero Commander	S-10	B-II	6750	89
AC-680FL Grand Commander	S-10	B-II	8500	173
AC-690 Twin Commander	S-10	B-II	10375	1359
Air Tractor AT-802	S-15	B-II	16000	226
Beech 1900 / 1900 C	D-15	B-II	16600	30
Beech King Air 200	Beechcraft King Air 300	B-II	12500	93
Beech King Air 90	Beechcraft King Air C90	B-II	10950	38
Dornier 228	S-12.5	B-II	12550	74
Gulfstream 695B	S-10	B-II	10325	452
Canadair CL215T	S-45	B-III	45250	351
Convair 580	D-50	B-III	54600	586
Dehaviland DHC-8	Q400/ Dash 8 Series 400	B-III	67200	9
BAE 146-200 / Avro RJ85A	Bae 146-300/300QC/300QT	C-III	97500	227
C-130	C-130	B-IV	155000	4
General Small Planes	S-3	A-I	2800	50000

PALMER AIRPORT – Taxiway N Aircraft Fleet Mix

Appendix G

FAARFIELD Software Analysis Results:

Taxiway N

Taxiway J

Apron E

Federal Aviation Administration FAARFIELD 2.0 Section Report

FAARFIELD 2.0.7 (Build 09/14/2021)

Job Name: Taxiway N

Section: TWN

Analysis Type: HMA on Aggregate

Last Run: Life Analysis 2021-11-18 12:47:49

Calculated Life = 26.1 Years

Total thickness to the top of the subgrade = 16.0in.

Pavement Structure Information by Layer

No.	Туре	Thickness in.	Modulus psi	Poisson's Ratio	Strength R psi
1	P-401/P-403 HMA Surface	4.0	200000	0.35	0
2	P-209 Crushed Aggregate	6.0	48502	0.35	0
3	P-154 Uncrushed Aggregate	6.0	19264	0.35	0
4	Subgrade	0	15000	0.35	0

Airplane Information

No.	Name	Gross Wt. Ibs	Annual Departures	% Annual Growth
1	S-3	2800	50000	0
2	Cessna 206 Stationair	3300	18	0
3	DC3	25200	577	0
4	Cessna 208B Grand Caravan EX	8750	10	0
5	Beechcraft King Air 300	12500	93	0
6	Beechcraft King Air C90	10950	38	0
7	BAe 146-300/300QC/300QT	97500	227	0
8	S-5	3800	5	0
9	S-5	5100	401	0
10	S-10	8000	717	0
11	S-10	10450	207	0
12	S-10	6750	89	0
13	S-10	8500	173	0
14	S-10	10375	1359	0
15	S-10	10325	452	0
16	S-15	17000	241	0
17	S-15	16000	226	0
18	D-15	16600	30	0
19	S-12.5	12550	74	0
20	S-45	45250	351	0
21	D-50	54600	586	0
22	Q400/Dash 8 Series 400	67200	9	0
23	C-130	155000	4	0

Additional Airplane Information

Subgrade CDF

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	S-3	0.00	0.00	3.79
2	Cessna 206 Stationair	0.00	0.00	3.66
3	DC3	0.00	0.00	2.6
4	Cessna 208B Grand Caravan EX	0.00	0.00	3.45
5	Beechcraft King Air 300	0.00	0.00	2.44
6	Beechcraft King Air C90	0.00	0.00	3.29
7	BAe 146-300/300QC/300QT	0.66	0.66	1.62
8	S-5	0.00	0.00	3.57
9	S-5	0.00	0.00	3.57
10	S-10	0.00	0.00	3.21
11	S-10	0.00	0.00	3.21
12	S-10	0.00	0.00	3.21
13	S-10	0.00	0.00	3.21
14	S-10	0.00	0.00	3.21
15	S-10	0.00	0.00	3.21
16	S-15	0.00	0.00	2.99
17	S-15	0.00	0.00	2.99
18	D-15	0.00	0.00	2.38
19	S-12.5	0.00	0.00	3.09
20	S-45	0.01	0.01	2.7
21	D-50	0.00	0.00	1.79
22	Q400/Dash 8 Series 400	0.00	0.00	1.94
23	C-130	0.10	0.10	2.47

User Is responsible For checking frost protection requirements.

Federal Aviation Administration FAARFIELD 2.0 Section Report

FAARFIELD 2.0.7 (Build 09/14/2021)

Job Name: Taxiway E

Section: TW B J L

Analysis Type: HMA on Aggregate

Last Run: Life Analysis 2022-06-02 12:22:18

Calculated Life = 1325397.0 Years

Total thickness to the top of the subgrade = 15.0in.

Pavement Structure Information by Layer

No.	Туре	Thickness in.	Modulus psi	Poisson's Ratio	Strength R psi
1	P-401/P-403 HMA Surface	3.0	200000	0.35	0
2	P-209 Crushed Aggregate	6.0	48502	0.35	0
3	P-154 Uncrushed Aggregate	6.0	19264	0.35	0
4	Subgrade	0	15000	0.35	0

Airplane Information

No.	Name	Gross Wt. Ibs	Annual Departures	% Annual Growth
1	S-3	2800	50000	0
2	Cessna 206 Stationair	3300	18	0
3	Cessna 208B Grand Caravan EX	8750	10	0
4	Beechcraft King Air 300	12500	93	0
5	Beechcraft King Air C90	10950	38	0
6	S-5	3800	5	0
7	S-5	5100	401	0
8	S-10	8000	717	0
9	S-10	10450	207	0
10	S-10	6750	89	0
11	S-10	8500	173	0
12	S-10	10375	1359	0
13	S-10	10325	452	0
14	S-15	17000	241	0
15	S-15	16000	226	0
16	D-15	16600	30	0
17	S-12.5	12550	74	0

Additional Airplane Information

Subgrade CDF

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	S-3	0.00	0.00	3.98
2	Cessna 206 Stationair	0.00	0.00	3.84
3	Cessna 208B Grand Caravan EX	0.00	0.00	3.61
4	Beechcraft King Air 300	0.00	0.00	2.51
5	Beechcraft King Air C90	0.00	0.00	3.42
6	S-5	0.00	0.00	3.73
7	S-5	0.00	0.00	3.73
8	S-10	0.00	0.00	3.34
9	S-10	0.00	0.00	3.34
10	S-10	0.00	0.00	3.34
11	S-10	0.00	0.00	3.34
12	S-10	0.00	0.00	3.34
13	S-10	0.00	0.00	3.34
14	S-15	0.00	0.00	3.1
15	S-15	0.00	0.00	3.1
16	D-15	0.00	0.00	2.44
17	S-12.5	0.00	0.00	3.21

User Is responsible For checking frost protection requirements.

Federal Aviation Administration FAARFIELD 2.0 Section Report

FAARFIELD 2.0.7 (Build 09/14/2021)

Job Name: Taxiway N

Section: Apron E

Analysis Type: HMA on Aggregate

Last Run: Life Analysis 2022-06-02 12:17:20

Calculated Life = 4185.1 Years

Total thickness to the top of the subgrade = 11.0in.

Pavement Structure Information by Layer

No.	Туре	Thickness in.	Modulus psi	Poisson's Ratio	Strength R psi
1	P-401/P-403 HMA Surface	3.0	200000	0.35	0
2	P-209 Crushed Aggregate	4.0	40280	0.35	0
3	P-154 Uncrushed Aggregate	4.0	18299	0.35	0
4	Subgrade	0	15000	0.35	0

Airplane Information

No.	Name	Gross Wt. Ibs	Annual Departures	% Annual Growth
1	DC3	25200	3500	0

Additional Airplane Information

Subgrade CDF

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	DC3	0.00	0.00	3.08

User Is responsible For checking frost protection requirements.